Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Cureus ; 16(3): e56680, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38646316

RESUMEN

Introduction Marine actinobacteria are promising sources of novel bioactive compounds due to their distinct ecological niches and diverse secondary metabolite production capabilities. Among these, Microbispora sp. T3S11 is notable for its unique spore chain structure, which allows for both morphological and genetic identification. Despite its potential, little is understood about the secondary metabolites produced by this strain. In this study, we hope to fill this gap by extracting and analyzing the antibacterial activities of secondary metabolites from Microbispora sp. T3S11, which will be the first time its bioactive compound profile is investigated. Aim To evaluate the antibacterial activity of secondary metabolites isolated from the marine actinobacterium Microbispora sp. T3S11. Materials and methods The antibacterial assays were carried out on agar plates containing the appropriate media for each pathogen. Sterile filter paper disks were impregnated with secondary metabolites extracted from Microbispora sp. T3S11 and placed on the surface of agar plates inoculated with the appropriate pathogens. Similarly, disks containing tetracycline were used as a positive control. The plates were then incubated at the appropriate temperature for each pathogen, and the zones of inhibition around the disks were measured to determine the extracted metabolites' antibacterial activity. Result Secondary metabolites had antimicrobial activity against Streptococcus mutans, Klebsiella pneumonia, and methicillin-resistant Staphylococcus aureus (MRSA). The inhibition of S. mutans was 7.5 mm and 8.5 mm at 75 µg/mL and 100 µg/mL, respectively. Klebsiella pneumonia zones measured 7 mm and 7.5 mm, while MRSA zones measured 7.6 mm and 8.5 mm at the same concentrations. Tetracycline, the standard antibiotic, had larger inhibition zones: 22 mm for S. mutans and Klebsiella pneumonia and 16 mm for MRSA, indicating variable susceptibility. Conclusion We conclude that the secondary metabolites extracted from Microbispora sp. T3S11 exhibits high antibacterial activity. This could be attributed to the presence of various active compounds.

2.
Cureus ; 16(4): e58091, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38738026

RESUMEN

Introduction Osteosarcoma, a malignant bone tumor, poses significant treatment challenges, necessitating the development of alternative therapeutic strategies. Aerva lanata (A. lanata), a medicinal plant with traditional use in various healthcare systems, has anti-cancer properties. This study looks at the oncolytic effect of A. lanata extract on osteosarcoma cell lines (sarcoma osteogenic-Saos2). Aim The aim of this study was to investigate the oncolytic effect of Aerva lanata on Saos2 cell lines through the apoptotic signaling pathway. Materials and methods A. lanata extract was prepared using Soxhlet extraction, and its cytotoxic effects on Saos2 cells were assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Real-time polymerase chain reaction (RT-PCR) analysis of gene activity was used to assess the extract's effect on apoptotic signaling pathways. Results The MTT assay demonstrated a dose-dependent decrease in Saos2 proliferation following treatment with A. lanata extract at concentrations ranging from 50 µg to 200 µg. The standard deviations observed ranged from 1.414 to 7.071. Gene expression analysis revealed that the extract led to a reduction in the messenger ribonucleic acid (mRNA) levels of the anti-apoptotic marker B-cell lymphoma 2 (Bcl2), with standard deviations ranging from 1 to 0.535. Conversely, it induced an increase in the mRNA levels of the tumor suppressor protein p53, with standard deviations ranging from 1 to 1.835. These findings suggest that the extract modulates the apoptotic pathways of the Bcl2 and p53 genes.  Conclusion A. lanata extract exhibits promising anti-cancer activity against Saos2 osteosarcoma cell lines, inducing apoptosis by downregulating Bcl2 and increasing p53. The study's findings suggest that A. lanata may be useful as a natural treatment for osteosarcoma.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda