Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(48): 30619-30627, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33184178

RESUMEN

The initial production of inflammatory mediators dictates host defense as well as tissue injury. Inflammasome activation is a constituent of the inflammatory response by recognizing pathogen and host-derived products and eliciting the production of IL-1ß and IL-18 in addition to inducing a type of inflammatory cell death termed "pyroptosis." Leukotriene B4 (LTB4) is a lipid mediator produced quickly (seconds to minutes) by phagocytes and induces chemotaxis, increases cytokine/chemokine production, and enhances antimicrobial effector functions. Whether LTB4 directly activates the inflammasome remains to be determined. Our data show that endogenously produced LTB4 is required for the expression of pro-IL-1ß and enhances inflammasome assembly in vivo and in vitro. Furthermore, LTB4-mediated Bruton's tyrosine kinase (BTK) activation is required for inflammasome assembly in vivo as well for IL-1ß-enhanced skin host defense. Together, these data unveil a new role for LTB4 in enhancing the expression and assembly of inflammasome components and suggest that while blocking LTB4 actions could be a promising therapeutic strategy to prevent inflammasome-mediated diseases, exogenous LTB4 can be used as an adjuvant to boost inflammasome-dependent host defense.


Asunto(s)
Interacciones Huésped-Patógeno , Inflamasomas/metabolismo , Leucotrieno B4/metabolismo , Fenómenos Fisiológicos de la Piel , Piel/metabolismo , Animales , Biopsia , Citocinas/metabolismo , Interacciones Huésped-Patógeno/inmunología , Inmunidad Innata , Mediadores de Inflamación/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Staphylococcus aureus Resistente a Meticilina , Ratones , Piel/inmunología , Piel/microbiología , Piel/patología
2.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36675071

RESUMEN

Kunitz domain-containing proteins are ubiquitous serine protease inhibitors with promising therapeutic potential. They target key proteases involved in major cellular processes such as inflammation or hemostasis through competitive inhibition in a substrate-like manner. Protease inhibitors from the Kunitz superfamily have a low molecular weight (18-24 kDa) and are characterized by the presence of one or more Kunitz motifs consisting of α-helices and antiparallel ß-sheets stabilized by three disulfide bonds. Kunitz-type inhibitors are an important fraction of the protease inhibitors found in tick saliva. Their roles in inhibiting and/or suppressing host homeostatic responses continue to be shown to be additive or synergistic with other protease inhibitors such as cystatins or serpins, ultimately mediating successful blood feeding for the tick. In this review, we discuss the biochemical features of tick salivary Kunitz-type protease inhibitors. We focus on their various effects on host hemostasis and immunity at the molecular and cellular level and their potential therapeutic applications. In doing so, we highlight that their pharmacological properties can be exploited for the development of novel therapies and vaccines.


Asunto(s)
Cistatinas , Serpinas , Garrapatas , Animales , Inhibidores de Serina Proteinasa/farmacología , Inhibidores de Serina Proteinasa/uso terapéutico , Inhibidores de Serina Proteinasa/metabolismo , Serpinas/metabolismo , Saliva/metabolismo , Cistatinas/metabolismo
3.
Mediators Inflamm ; 2021: 9940009, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34712101

RESUMEN

Alloxan (ALX) and streptozotocin (STZ) are extensively used to induce type 1 diabetes (T1D) in animal models. This study is aimed at evaluating the differences in immune parameters caused by ALX and STZ. T1D was induced either with ALX or with STZ, and the animals were followed for up to 180 days. Both ALX and STZ induced a decrease in the total number of circulating leukocytes and lymphocytes, with an increase in granulocytes when compared to control mice (CT). STZ-treated mice also exhibited an increase in neutrophils and a reduction in the lymphocyte percentage in the bone marrow. In addition, while the STZ-treated group showed a decrease in total CD3+, CD4-CD8+, and CD4+CD8+ T lymphocytes in the thymus and CD19+ B lymphocytes in the pancreas and spleen, the ALX group showed an increase in CD4-CD8+ and CD19+ only in the thymus. Basal levels of splenic interleukin- (IL-) 1ß and pancreatic IL-6 in the STZ group were decreased. Both diabetic groups showed atrophy of the thymic medulla and degeneration of pancreatic islets of Langerhans composed of inflammatory infiltration and hyperemia with vasodilation. ALX-treated mice showed a decrease in reticuloendothelial cells, enhanced lymphocyte/thymocyte cell death, and increased number of Hassall's corpuscles. Reduced in vitro activation of splenic lymphocytes was found in the STZ-treated group. Furthermore, mice immunized with ovalbumin (OVA) showed a more intense antigen-specific paw edema response in the STZ-treated group, while production of anti-OVA IgG1 antibodies was similar in both groups. Thereby, important changes in immune cell parameters in vivo and in vitro were found at an early stage of T1D in the STZ-treated group, whereas alterations in the ALX-treated group were mostly found in the chronic phase of T1D, including increased mortality rates. These findings suggest that the effects of ALX and STZ influenced, at different times, lymphoid organs and their cell populations.


Asunto(s)
Aloxano/toxicidad , Diabetes Mellitus Experimental/inmunología , Diabetes Mellitus Tipo 1/inmunología , Linfocitos/efectos de los fármacos , Estreptozocina/toxicidad , Animales , Glucemia/análisis , Citocinas/biosíntesis , Linfocitos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Páncreas/efectos de los fármacos , Páncreas/patología , Bazo/efectos de los fármacos , Bazo/inmunología , Timo/efectos de los fármacos , Timo/patología
4.
Immunology ; 158(1): 47-59, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31315156

RESUMEN

During probing and blood feeding, haematophagous mosquitoes inoculate a mixture of salivary molecules into their vertebrate hosts' skin. In addition to the anti-haemostatic and immunomodulatory activities, mosquito saliva also triggers acute inflammatory reactions, especially in sensitized hosts. Here, we characterize the oedema and the cellular infiltrate following Aedes aegypti mosquito bites in the skin of sensitized and non-sensitized BALB/c mice by flow cytometry. Ae. aegypti bites induced an increased oedema in the ears of both non-sensitized and salivary gland extract- (SGE-)sensitized mice, peaking at 6 hr and 24 hr after exposure, respectively. The quantification of the total cell number in the ears revealed that the cellular recruitment was more robust in SGE-sensitized mice than in non-sensitized mice, and the histological evaluation confirmed these findings. The immunophenotyping performed by flow cytometry revealed that mosquito bites were able to produce complex changes in cell populations present in the ears of non-sensitized and SGE-sensitized mice. When compared with steady-state ears, the leucocyte populations significantly recruited to the skin after mosquito bites in non-sensitized and sensitized mice were eosinophils, neutrophils, monocytes, inflammatory monocytes, mast cells, B-cells and CD4+ T-cells, each one with its specific kinetics. The changes in the absolute number of cells suggested two cell recruitment profiles: (i) a saliva-dependent migration; and (ii) a migration dependent on the immune status of the host. These findings suggest that mosquito bites influence the skin microenvironment by inducing differential cell migration, which is dependent on the degree of host sensitization to salivary molecules.


Asunto(s)
Aedes/inmunología , Quimiotaxis de Leucocito , Edema/inmunología , Mordeduras y Picaduras de Insectos/inmunología , Leucocitos/inmunología , Mastocitos/inmunología , Saliva/inmunología , Piel/inmunología , Animales , Microambiente Celular , Modelos Animales de Enfermedad , Femenino , Cinética , Masculino , Ratones Endogámicos BALB C , Infiltración Neutrófila
5.
Front Immunol ; 15: 1310505, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38515742

RESUMEN

Aging is a complex, natural, and irreversible phenomenon that subjects the body to numerous changes in the physiological process, characterized by a gradual decline in the organism's homeostatic mechanisms, closely related to immunosenescence. Here, we evaluated the regulation of immunosenescence in lymphoid organs of senescence-accelerated prone 8 (SAM-P8) and senescence-accelerated resistant 1 (SAM-R1) mice treated with a low dose of rapamycin (RAPA). Mice were treated with a dose of 7.1 µg/kg RAPA for 2 months and had body mass and hematological parameters analyzed prior and during treatment. Cellular and humoral parameters of serum, bone marrow, thymus, and spleen samples were evaluated by ELISA, histology, and flow cytometry. Changes in body mass, hematological parameters, cell number, and in the secretion of IL-1ß, IL-6, TNF-α, IL-7, and IL-15 cytokines were different between the 2 models used. In histological analyses, we observed that SAM-P8 mice showed faster thymic involution than SAM-R1 mice. Regarding the T lymphocyte subpopulations in the spleen, CD4+ and CD8+ T cell numbers were higher and lower, respectively, in SAM-P8 mice treated with RAPA, with the opposite observed in SAM-R1. Additionally, we found that the low dose of RAPA used did not trigger changes that could compromise the immune response of these mice and the administered dose may have contributed to changes in important lymphocyte populations in the adaptive immune response and the secretion of cytokines that directly collaborate with the maturation and proliferation of these cells.


Asunto(s)
Envejecimiento , Sirolimus , Ratones , Humanos , Animales , Sirolimus/farmacología , Subgrupos de Linfocitos T , Linfocitos T CD8-positivos , Citocinas
6.
PLoS Biol ; 8(11): e1000547, 2010 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-21152418

RESUMEN

The highly expressed D7 protein family of mosquito saliva has previously been shown to act as an anti-inflammatory mediator by binding host biogenic amines and cysteinyl leukotrienes (CysLTs). In this study we demonstrate that AnSt-D7L1, a two-domain member of this group from Anopheles stephensi, retains the CysLT binding function seen in the homolog AeD7 from Aedes aegypti but has lost the ability to bind biogenic amines. Unlike any previously characterized members of the D7 family, AnSt-D7L1 has acquired the important function of binding thromboxane A(2) (TXA(2)) and its analogs with high affinity. When administered to tissue preparations, AnSt-D7L1 abrogated Leukotriene C(4) (LTC(4))-induced contraction of guinea pig ileum and contraction of rat aorta by the TXA(2) analog U46619. The protein also inhibited platelet aggregation induced by both collagen and U46619 when administered to stirred platelets. The crystal structure of AnSt-D7L1 contains two OBP-like domains and has a structure similar to AeD7. In AnSt-D7L1, the binding pocket of the C-terminal domain has been rearranged relative to AeD7, making the protein unable to bind biogenic amines. Structures of the ligand complexes show that CysLTs and TXA(2) analogs both bind in the same hydrophobic pocket of the N-terminal domain. The TXA(2) analog U46619 is stabilized by hydrogen bonding interactions of the ω-5 hydroxyl group with the phenolic hydroxyl group of Tyr 52. LTC(4) and occupies a very similar position to LTE(4) in the previously determined structure of its complex with AeD7. As yet, it is not known what, if any, new function has been acquired by the rearranged C-terminal domain. This article presents, to our knowledge, the first structural characterization of a protein from mosquito saliva that inhibits collagen mediated platelet activation.


Asunto(s)
Anopheles/metabolismo , Insectos Vectores/metabolismo , Leucotrienos/metabolismo , Malaria/transmisión , Saliva/metabolismo , Tromboxano A2/metabolismo , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/metabolismo , Animales , Aorta/efectos de los fármacos , Calorimetría , Cobayas , Humanos , Íleon/efectos de los fármacos , Proteínas de Insectos/química , Proteínas de Insectos/metabolismo , Proteínas de Insectos/farmacología , Leucotrieno C4/farmacología , Contracción Muscular/efectos de los fármacos , Agregación Plaquetaria/efectos de los fármacos , Unión Proteica , Estructura Secundaria de Proteína , Ratas , Saliva/química , Tromboxano A2/análogos & derivados
7.
Arterioscler Thromb Vasc Biol ; 32(9): 2185-98, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22796577

RESUMEN

OBJECTIVE: Blood-sucking arthropods' salivary glands contain a remarkable diversity of antihemostatics. The aim of the present study was to identify the unique salivary anticoagulant of the sand fly Lutzomyia longipalpis, which remained elusive for decades. METHODS AND RESULTS: Several L. longipalpis salivary proteins were expressed in human embryonic kidney 293 cells and screened for inhibition of blood coagulation. A novel 32.4-kDa molecule, named Lufaxin, was identified as a slow, tight, noncompetitive, and reversible inhibitor of factor Xa (FXa). Notably, Lufaxin's primary sequence does not share similarity to any physiological or salivary inhibitors of coagulation reported to date. Lufaxin is specific for FXa and does not interact with FX, Dansyl-Glu-Gly-Arg-FXa, or 15 other enzymes. In addition, Lufaxin blocks prothrombinase and increases both prothrombin time and activated partial thromboplastin time. Surface plasmon resonance experiments revealed that FXa binds Lufaxin with an equilibrium constant ≈3 nM, and isothermal titration calorimetry determined a stoichiometry of 1:1. Lufaxin also prevents protease-activated receptor 2 activation by FXa in the MDA-MB-231 cell line and abrogates edema formation triggered by injection of FXa in the paw of mice. Moreover, Lufaxin prevents FeCl(3)-induced carotid artery thrombus formation and prolongs activated partial thromboplastin time ex vivo, implying that it works as an anticoagulant in vivo. Finally, salivary gland of sand flies was found to inhibit FXa and to interact with the enzyme. CONCLUSIONS: Lufaxin belongs to a novel family of slow-tight FXa inhibitors, which display antithrombotic and anti-inflammatory activities. It is a useful tool to understand FXa structural features and its role in prohemostatic and proinflammatory events.


Asunto(s)
Antiinflamatorios/farmacología , Inhibidores del Factor Xa , Fibrinolíticos/farmacología , Inflamación/prevención & control , Proteínas de Insectos/farmacología , Psychodidae/química , Receptor PAR-2/antagonistas & inhibidores , Glándulas Salivales/química , Trombosis/prevención & control , Secuencia de Aminoácidos , Animales , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , Coagulación Sanguínea/efectos de los fármacos , Calorimetría , Línea Celular Tumoral , Cloruros , Clonación Molecular , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Factor Xa/metabolismo , Femenino , Compuestos Férricos , Fibrinolíticos/química , Fibrinolíticos/aislamiento & purificación , Células HEK293 , Humanos , Inflamación/sangre , Inflamación/metabolismo , Proteínas de Insectos/química , Proteínas de Insectos/aislamiento & purificación , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Peso Molecular , Tiempo de Tromboplastina Parcial , Unión Proteica , Tiempo de Protrombina , Ratas , Receptor PAR-2/metabolismo , Proteínas Recombinantes/antagonistas & inhibidores , Proteínas Recombinantes/metabolismo , Resonancia por Plasmón de Superficie , Tromboplastina/antagonistas & inhibidores , Tromboplastina/metabolismo , Trombosis/sangre , Trombosis/inducido químicamente , Trombosis/metabolismo , Factores de Tiempo
8.
Arterioscler Thromb Vasc Biol ; 32(3): 786-98, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22116094

RESUMEN

OBJECTIVE: The coagulation-inflammation cycle has been implicated as a critical component in malaria pathogenesis. Defibrotide (DF), a mixture of DNA aptamers, displays anticoagulant, anti-inflammatory, and endothelial cell (EC)-protective activities and has been successfully used to treat comatose children with veno-occlusive disease. DF was investigated here as a drug to treat cerebral malaria. METHODS AND RESULTS: DF blocks tissue factor expression by ECs incubated with parasitized red blood cells and attenuates prothrombinase activity, platelet aggregation, and complement activation. In contrast, it does not affect nitric oxide bioavailability. We also demonstrated that Plasmodium falciparum glycosylphosphatidylinositol (Pf-GPI) induces tissue factor expression in ECs and cytokine production by dendritic cells. Notably, dendritic cells, known to modulate coagulation and inflammation systemically, were identified as a novel target for DF. Accordingly, DF inhibits Toll-like receptor ligand-dependent dendritic cells activation by a mechanism that is blocked by adenosine receptor antagonist (8-p-sulfophenyltheophylline) but not reproduced by synthetic poly-A, -C, -T, and -G. These results imply that aptameric sequences and adenosine receptor mediate dendritic cells responses to the drug. DF also prevents rosetting formation, red blood cells invasion by P. falciparum and abolishes oocysts development in Anopheles gambiae. In a murine model of cerebral malaria, DF affected parasitemia, decreased IFN-γ levels, and ameliorated clinical score (day 5) with a trend for increased survival. CONCLUSION: Therapeutic use of DF in malaria is proposed.


Asunto(s)
Antiinflamatorios/farmacología , Anticoagulantes/farmacología , Antimaláricos/farmacología , Coagulación Sanguínea/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Malaria Cerebral/tratamiento farmacológico , Plasmodium berghei/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos , Polidesoxirribonucleótidos/farmacología , Animales , Células Cultivadas , Activación de Complemento/efectos de los fármacos , Citocinas/sangre , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Células Dendríticas/parasitología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Células Endoteliales/inmunología , Células Endoteliales/metabolismo , Células Endoteliales/parasitología , Femenino , Glicosilfosfatidilinositoles/metabolismo , Hemoglobinas/metabolismo , Humanos , Mediadores de Inflamación/sangre , Malaria Cerebral/sangre , Malaria Cerebral/inmunología , Malaria Cerebral/parasitología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Óxido Nítrico/metabolismo , Plasmodium berghei/patogenicidad , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/metabolismo , Plasmodium falciparum/patogenicidad , Agregación Plaquetaria/efectos de los fármacos , Receptores Purinérgicos P1/efectos de los fármacos , Receptores Purinérgicos P1/metabolismo , Índice de Severidad de la Enfermedad , Tromboplastina/metabolismo , Factores de Tiempo
9.
Neuroimmunomodulation ; 20(3): 134-40, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23428661

RESUMEN

OBJECTIVES: Sleep deprivation is a growing public health hazard, yet it is still under-recognized. Sleep disorders and disruption of sleep patterns may compromise the immune function and adversely affect host resistance to infectious diseases. This is a particular risk in cancer patients, who report a high frequency of sleep disturbances. The present study investigated the effects of sleep deprivation on the development of Ehrlich ascitic tumors (EAT) in female BALB/c mice. Our study also evaluated whether EAT would induce alterations in sleep pattern. Spleen lymphocyte cell populations and mortality were also quantified. METHODS: Female BALB/c mice were intraperitoneally inoculated with EAT cells. Immediately after the inoculation procedure, animals were sleep deprived for 72 h. Ten or 15 days after inoculation, the number of tumoral cells was quantified and the lymphocytic cell population in the spleen was characterized by flow cytometry. In addition, the effect of sleep deprivation on EAT-induced mortality was quantified and the influence of EAT on sleep patterns was determined. RESULTS: Sleep deprivation did not potentiate EAT growth, but it significantly increased mortality. Additionally, both EAT and sleep deprivation decreased frequencies of splenic CD4+, CD8+ and CD19+ cells. With respect to sleep patterns, EAT significantly enhanced paradoxical sleep time. CONCLUSIONS: Although sleep deprivation did not potentiate EAT growth, it decreased the survival of female tumor-bearing mice.


Asunto(s)
Carcinoma de Ehrlich/mortalidad , Privación de Sueño/complicaciones , Análisis de Varianza , Animales , Antígenos CD/metabolismo , Carcinoma de Ehrlich/inmunología , Modelos Animales de Enfermedad , Femenino , Citometría de Flujo , Humanos , Linfocitos/inmunología , Linfocitos/patología , Ratones , Ratones Endogámicos BALB C , Trasplante de Neoplasias/métodos , Bazo/patología
10.
J Immunol ; 187(8): 4347-59, 2011 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-21930966

RESUMEN

Among several pharmacological compounds, Phlebotomine saliva contains substances with anti-inflammatory properties. In this article, we demonstrated the therapeutic activity of salivary gland extract (SGE) of Phlebotomus papatasi in an experimental model of arthritis (collagen-induced arthritis [CIA]) and identified the constituents responsible for such activity. Daily administration of SGE, initiated at disease onset, attenuated the severity of CIA, reducing the joint lesion and proinflammatory cytokine release. In vitro incubation of dendritic cells (DCs) with SGE limited specific CD4(+) Th17 cell response. We identified adenosine (ADO) and 5'AMP as the major salivary molecules responsible for anti-inflammatory activities. Pharmacologic inhibition of ADO A2(A) receptor or enzymatic catabolism of salivary nucleosides reversed the SGE-induced immunosuppressive effect. Importantly, CD73 (ecto-5'-nucleotidase enzyme) is expressed on DC surface during stage of activation, suggesting that ADO is also generated by 5'AMP metabolism. Moreover, both nucleosides mimicked SGE-induced anti-inflammatory activity upon DC function in vitro and attenuated establishment of CIA in vivo. We reveal that ADO and 5'AMP are present in pharmacological amounts in P. papatasi saliva and act preferentially on DC function, consequently reducing Th17 subset activation and suppressing the autoimmune response. Thus, it is plausible that these constituents might be promising therapeutic molecules to target immune inflammatory diseases.


Asunto(s)
Antiinflamatorios/farmacología , Artritis Experimental/inmunología , Células Dendríticas/efectos de los fármacos , Nucleósidos/farmacología , Phlebotomus/química , Glándulas Salivales/química , Animales , Artritis Experimental/patología , Proliferación Celular/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Células Dendríticas/inmunología , Femenino , Masculino , Ratones , Ratones Endogámicos DBA , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Extractos de Tejidos/química , Extractos de Tejidos/farmacología
11.
Parasit Vectors ; 16(1): 96, 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36899435

RESUMEN

BACKGROUND: The tick Amblyomma sculptum is the major vector of Rickettsia rickettsii, the causative agent of the highly lethal Brazilian spotted fever. It has been shown that R. rickettsii inhibits apoptosis in both human endothelial cells and tick cells. Apoptosis is regulated by different factors, among which inhibitors of apoptosis proteins (IAPs) play a central role. In the study reported here, we selected an IAP of A. sculptum that has not yet been characterized to assess its role in cell death and to determine the effects of its gene silencing on tick fitness and R. rickettsii infection. METHODS: An A. sculptum cell line (IBU/ASE-16) was treated with specific double-stranded RNA (dsRNA) for either IAP (dsIAP) or green fluorescent protein (dsGFP; as a control). The activity of caspase-3 and the exposure of phosphatidylserine were determined in both groups. In addition, unfed adult ticks, infected or not infected with R. rickettsii, were treated with either dsIAP or dsGFP and allowed to feed on noninfected rabbits. In parallel, noninfected ticks were allowed to feed on an R. rickettsii-infected rabbit. Ticks (infected or not with R. rickettsii) that remained unfed were used as a control. RESULTS: Caspase-3 activity and the externalization of phosphatidylserine were significantly higher in IBU/ASE-16 cells treated with dsIAP than in those treated with dsGFP. The mortality rates of ticks in the dsIAP group were much higher than those in the dsGFP group when they were allowed to feed on rabbits, independent of the presence of R. rickettsii. Conversely, lower mortality rates were recorded in unfed ticks. CONCLUSIONS: Our results show that IAP negatively regulates apoptosis in A. sculptum cells. Moreover, IAP-silenced ticks experienced higher mortality rates following the acquisition of a blood meal, suggesting that feeding may trigger the activation of apoptosis in the absence of this physiological regulator. These findings indicate that IAP is a potential antigen for an anti-tick vaccine.


Asunto(s)
Ixodidae , Fiebre Maculosa de las Montañas Rocosas , Garrapatas , Animales , Humanos , Conejos , Garrapatas/microbiología , Amblyomma , Caspasa 3/metabolismo , Ixodidae/genética , Proteínas Inhibidoras de la Apoptosis/metabolismo , Células Endoteliales , Fosfatidilserinas/metabolismo , Rickettsia rickettsii/fisiología , Brasil
12.
Front Physiol ; 14: 1055706, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37441000

RESUMEN

Aedes aegypti (Ae. aegypti) saliva induces a variety of anti-inflammatory and immunomodulatory activities. Interestingly, although it is known that mosquito bites cause allergic reactions in sensitised hosts, the primary exposure of humans to Ae. aegypti does not evoke significant itching. Whether active components in the saliva of Ae. aegypti can counteract the normal itch reaction to injury produced by a histaminergic or non-histaminergic pathway in vertebrate hosts is unknown. This study investigated the effects of Ae. aegypti mosquito salivary gland extract (SGE) on sensitive reactions such as itching and associated skin inflammation. Acute pruritus and plasma extravasation were induced in mice by the intradermal injection of either compound 48/80 (C48/80), the Mas-related G protein-coupled receptor (Mrgpr) agonist chloroquine (CQ), or the transient receptor potential ankyrin 1 (TRPA1) agonist allyl isothiocyanate (AITC). The i.d. co-injection of Ae. aegypti SGE inhibited itching, plasma extravasation, and neutrophil influx evoked by C48/80, but it did not significantly affect mast cell degranulation in situ or in vitro. Additionally, SGE partially reduced CQ- and AITC-induced pruritus in vivo, suggesting that SGE affects pruriceptive nerve firing independently of the histaminergic pathway. Activation of TRPA1 significantly increased intracellular Ca2+ in TRPA-1-transfected HEK293t lineage, which was attenuated by SGE addition. We showed for the first time that Ae. aegypti SGE exerts anti-pruriceptive effects, which are partially regulated by the histamine-independent itch TRPA1 pathway. Thus, SGE may possess bioactive molecules with therapeutic potential for treating nonhistaminergic itch.

13.
J Biol Chem ; 286(32): 27998-8010, 2011 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-21673107

RESUMEN

The molecular mechanism of factor Xa (FXa) inhibition by Alboserpin, the major salivary gland anticoagulant from the mosquito and yellow fever vector Aedes albopictus, has been characterized. cDNA of Alboserpin predicts a 45-kDa protein that belongs to the serpin family of protease inhibitors. Recombinant Alboserpin displays stoichiometric, competitive, reversible and tight binding to FXa (picomolar range). Binding is highly specific and is not detectable for FX, catalytic site-blocked FXa, thrombin, and 12 other enzymes. Alboserpin displays high affinity binding to heparin (K(D) ~ 20 nM), but no change in FXa inhibition was observed in the presence of the cofactor, implying that bridging mechanisms did not take place. Notably, Alboserpin was also found to interact with phosphatidylcholine and phosphatidylethanolamine but not with phosphatidylserine. Further, annexin V (in the absence of Ca(2+)) or heparin outcompetes Alboserpin for binding to phospholipid vesicles, suggesting a common binding site. Consistent with its activity, Alboserpin blocks prothrombinase activity and increases both prothrombin time and activated partial thromboplastin time in vitro or ex vivo. Furthermore, Alboserpin prevents thrombus formation provoked by ferric chloride injury of the carotid artery and increases bleeding in a dose-dependent manner. Alboserpin emerges as an atypical serpin that targets FXa and displays unique phospholipid specificity. It conceivably uses heparin and phosphatidylcholine/phosphatidylethanolamine as anchors to increase protein localization and effective concentration at sites of injury, cell activation, or inflammation.


Asunto(s)
Aedes/química , Inhibidores del Factor Xa , Fibrinolíticos/química , Heparina/química , Proteínas de Insectos/química , Insectos Vectores/química , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Serpinas/química , Fiebre Amarilla , Aedes/genética , Aedes/metabolismo , Aedes/virología , Animales , Coagulación Sanguínea , Factor Xa/química , Factor Xa/genética , Factor Xa/metabolismo , Fibrinolíticos/metabolismo , Heparina/genética , Heparina/metabolismo , Humanos , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Insectos Vectores/metabolismo , Insectos Vectores/virología , Ratones , Fosfatidilcolinas/genética , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/genética , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/química , Fosfatidilserinas/genética , Fosfatidilserinas/metabolismo , Unión Proteica , Serpinas/genética , Serpinas/metabolismo
14.
J Biol Chem ; 286(13): 10960-9, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21270122

RESUMEN

Dendritic cells (DCs) are powerful initiators of innate and adaptive immune responses. Ticks are blood-sucking ectoparasite arthropods that suppress host immunity by secreting immunomodulatory molecules in their saliva. Here, compounds present in Rhipicephalus sanguineus tick saliva with immunomodulatory effects on DC differentiation, cytokine production, and costimulatory molecule expression were identified. R. sanguineus tick saliva inhibited IL-12p40 and TNF-α while potentiating IL-10 cytokine production by bone marrow-derived DCs stimulated by Toll-like receptor-2, -4, and -9 agonists. To identify the molecules responsible for these effects, we fractionated the saliva through microcon filtration and reversed-phase HPLC and tested each fraction for DC maturation. Fractions with proven effects were analyzed by micro-HPLC tandem mass spectrometry or competition ELISA. Thus, we identified for the first time in tick saliva the purine nucleoside adenosine (concentration of ∼110 pmol/µl) as a potent anti-inflammatory salivary inhibitor of DC cytokine production. We also found prostaglandin E(2) (PGE(2) ∼100 nM) with comparable effects in modulating cytokine production by DCs. Both Ado and PGE(2) inhibited cytokine production by inducing cAMP-PKA signaling in DCs. Additionally, both Ado and PGE(2) were able to inhibit expression of CD40 in mature DCs. Finally, flow cytometry analysis revealed that PGE(2), but not Ado, is the differentiation inhibitor of bone marrow-derived DCs. The presence of non-protein molecules adenosine and PGE(2) in tick saliva indicates an important evolutionary mechanism used by ticks to subvert host immune cells and allow them to successfully complete their blood meal and life cycle.


Asunto(s)
Células de la Médula Ósea/inmunología , Células Dendríticas/inmunología , Factores Inmunológicos/química , Factores Inmunológicos/farmacología , Rhipicephalus sanguineus/química , Saliva/química , Animales , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Antígenos CD40/biosíntesis , Antígenos CD40/inmunología , Células Cultivadas , Proteínas Quinasas Dependientes de AMP Cíclico/inmunología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Células Dendríticas/citología , Células Dendríticas/metabolismo , Dinoprostona/biosíntesis , Dinoprostona/inmunología , Interleucina-10/biosíntesis , Interleucina-10/inmunología , Subunidad p40 de la Interleucina-12/biosíntesis , Subunidad p40 de la Interleucina-12/inmunología , Masculino , Ratones , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología , Receptores Toll-Like/inmunología , Receptores Toll-Like/metabolismo , Factor de Necrosis Tumoral alfa/biosíntesis , Factor de Necrosis Tumoral alfa/inmunología
15.
J Immunol ; 182(12): 7422-9, 2009 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-19494265

RESUMEN

Sialostatin L (SialoL) is a secreted cysteine protease inhibitor identified in the salivary glands of the Lyme disease vector Ixodes scapularis. In this study, we reveal the mechanisms of SialoL immunomodulatory actions on the vertebrate host. LPS-induced maturation of dendritic cells from C57BL/6 mice was significantly reduced in the presence of SialoL. Although OVA degradation was not affected by the presence of SialoL in dendritic cell cultures, cathepsin S activity was partially inhibited, leading to an accumulation of a 10-kDa invariant chain intermediate in these cells. As a consequence, in vitro Ag-specific CD4(+) T cell proliferation was inhibited in a time-dependent manner by SialoL, and further studies engaging cathepsin S(-/-) or cathepsin L(-/-) dendritic cells confirmed that the immunomodulatory actions of SialoL are mediated by inhibition of cathepsin S. Moreover, mice treated with SialoL displayed decreased early T cell expansion and recall response upon antigenic stimulation. Finally, SialoL administration during the immunization phase of experimental autoimmune encephalomyelitis in mice significantly prevented disease symptoms, which was associated with impaired IFN-gamma and IL-17 production and specific T cell proliferation. These results illuminate the dual mechanism by which a human disease vector protein modulates vertebrate host immunity and reveals its potential in prevention of an autoimmune disease.


Asunto(s)
Autoinmunidad/efectos de los fármacos , Autoinmunidad/inmunología , Cistatinas/farmacología , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Animales , Antígenos/inmunología , Catepsinas/antagonistas & inhibidores , Catepsinas/metabolismo , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/inmunología , Células Cultivadas , Citocinas/biosíntesis , Citocinas/inmunología , Células Dendríticas/citología , Células Dendríticas/metabolismo , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/prevención & control , Inhibidores Enzimáticos/farmacología , Femenino , Ixodes/química , Lipopolisacáridos/farmacología , Prueba de Cultivo Mixto de Linfocitos , Ratones , Ratones Noqueados , Unión Proteica , Linfocitos T/citología , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Linfocitos T/metabolismo
16.
Trends Parasitol ; 37(4): 340-354, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33303363

RESUMEN

From seminal publications in the early 1970s, the world learned that dendritic cells (DCs) are powerful and versatile antigen-presenting cells. It took a few years until the first studies expanded our understanding of the pivotal role of these immune 'soldiers' against ticks. Advances in biochemistry, molecular biology, and bioinformatics have shed light on the identification of key salivary molecules that modulate the biology of DCs in favor of tick parasitism. Here, we present a critical overview of the discoveries accumulated on the tick-host battlefield from a DC perspective. Moreover, the clinical significance of DC-targeted tick salivary components is discussed, not only as facilitators of the transmission of tick-borne pathogens or vaccine candidates, but also as potential immunobiologics to treat immune-mediated diseases.


Asunto(s)
Células Dendríticas , Interacciones Huésped-Parásitos , Garrapatas , Animales , Células Dendríticas/inmunología , Interacciones Huésped-Parásitos/inmunología , Humanos , Saliva/inmunología , Garrapatas/inmunología
17.
PLoS One ; 16(2): e0245788, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33556084

RESUMEN

Acetaminophen (N-acetyl-p-aminophenol, APAP) overdose is the most common cause of drug-induced liver injury (DILI). Although the primary hepatic damage is induced by APAP-derived toxic intermediates resulting from cytochrome P450 metabolism, immune components also play an important role in DILI pathophysiology. Aedes aegypti saliva is a source of bioactive molecules with in vitro anti-inflammatory and immunomodulatory activities. However, evidences on the therapeutic use of Ae. aegypti salivary preparations in animal models of relevant clinical conditions are still scarce. Thus, the present study was designed to evaluate the protective role of Ae. aegypti saliva in a murine model of APAP-induced DILI. C57BL/6 mice were exposed to Ae. aegypti bites 2 hours after APAP overdose. Biochemical and immunological parameters were evaluated in blood and liver samples at different time points after APAP administration. Exposure to Ae. aegypti saliva attenuated liver damage, as demonstrated by reduced hepatic necrosis and serum levels of alanine aminotransferase in APAP-overdosed mice. The levels of hepatic CYP2E1, the major enzyme responsible for the bioactivation of APAP, were not changed in Ae. aegypti exposed animals, suggesting no effects in the generation of hepatotoxic metabolites. On the other hand, mice treated with Ae. aegypti saliva following APAP overdose presented lower serum concentration of TNF-α, IL-6, IL-1ß and IL-10, as well as reduced frequency of inflammatory cell populations in the liver, such as NKT cells, macrophages and dendritic cells. These findings show that Ae. aegypti saliva has bioactive molecules with therapeutic properties and may represent a prospective source of new compounds in the management of DILI-associated inflammatory disorders and, perhaps, many other inflammatory/autoimmune diseases.


Asunto(s)
Acetaminofén/efectos adversos , Aedes/fisiología , Enfermedad Hepática Inducida por Sustancias y Drogas/sangre , Factores Inmunológicos/metabolismo , Mordeduras y Picaduras de Insectos/inmunología , Saliva/metabolismo , Alanina Transaminasa/sangre , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/inmunología , Citocromo P-450 CYP2E1/metabolismo , Citocinas/sangre , Modelos Animales de Enfermedad , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL
18.
Front Immunol ; 12: 681671, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34349757

RESUMEN

The sialotranscriptomes of Aedes aegypti revealed a transcript overexpressed in female salivary glands that codes a mature 7.8 kDa peptide. The peptide, specific to the Aedes genus, has a unique sequence, presents a putative secretory nature and its function is unknown. Here, we confirmed that the peptide is highly expressed in the salivary glands of female mosquitoes when compared to the salivary glands of males, and its secretion in mosquito saliva is able to sensitize the vertebrate host by inducing the production of specific antibodies. The synthetic version of the peptide downmodulated nitric oxide production by activated peritoneal murine macrophages. The fractionation of a Ae. aegypti salivary preparation revealed that the fractions containing the naturally secreted peptide reproduced the nitric oxide downmodulation. The synthetic peptide also selectively interfered with cytokine production by murine macrophages, inhibiting the production of IL-6, IL-12p40 and CCL2 without affecting TNF-α or IL-10 production. Likewise, intracellular proteins associated with macrophage activation were also distinctively modulated: while iNOS and NF-κB p65 expression were diminished, IκBα and p38 MAPK expression did not change in the presence of the peptide. The anti-inflammatory properties of the synthetic peptide were tested in vivo on a dextran sulfate sodium-induced colitis model. The therapeutic administration of the Ae. aegypti peptide reduced the leukocytosis, macrophage activity and nitric oxide levels in the gut, as well as the expression of cytokines associated with the disease, resulting in amelioration of its clinical signs. Given its biological properties in vitro and in vivo, the molecule was termed Aedes-specific MOdulatory PEptide (AeMOPE-1). Thus, AeMOPE-1 is a novel mosquito-derived immunobiologic with potential to treat immune-mediated disorders.


Asunto(s)
Aedes/inmunología , Colitis/etiología , Colitis/metabolismo , Activación de Macrófagos/inmunología , Macrófagos/inmunología , Proteínas y Péptidos Salivales/inmunología , Secuencia de Aminoácidos , Animales , Biomarcadores , Colitis/patología , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Femenino , Inmunomodulación , Activación de Linfocitos/inmunología , Macrófagos/metabolismo , Masculino , Ratones , Proteínas y Péptidos Salivales/química , Linfocitos T/inmunología , Linfocitos T/metabolismo
19.
Microbiome ; 9(1): 134, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-34112246

RESUMEN

The phenotypes of allergic airway diseases are influenced by the interplay between host genetics and the gut microbiota, which may be modulated by probiotics. We investigated the probiotic effects on allergic inflammation in A/J and C57BL/6 mice. C57BL/6 mice had increased gut microbiota diversity compared to A/J mice at baseline. Acetate producer probiotics differentially modulated and altered the genus abundance of specific bacteria, such as Akkermansia and Allistipes, in mouse strains. We induced airway inflammation followed by probiotic treatment and found that only A/J mice exhibited decreased inflammation, and the beneficial effects of probiotics in A/J mice were partially due to acetate production. To understand the relevance of microbial composition colonization in the development of allergic diseases, we implanted female C57BL/6 mice with A/J embryos to naturally modulate the microbial composition of A/J mice, which increased gut microbiota diversity and reduced eosinophilic inflammation in A/J. These data demonstrate the central importance of microbiota to allergic phenotype severity. Video Abstract.


Asunto(s)
Microbioma Gastrointestinal , Probióticos , Animales , Femenino , Inflamación , Ratones , Ratones Endogámicos C57BL , Sistema Respiratorio
20.
Pharmacol Res ; 62(4): 298-307, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20450976

RESUMEN

Eosinophils are leukocytes that are present in several body compartments and in the blood at relatively low numbers under normal conditions. However, an increase in the number of eosinophils, in the blood or in the tissues, is observed in allergic or parasitic disorders. Although some progress has been made in understanding the development of eosinophil-mediated inflammation in allergic and parasitic diseases, the discovery of new compounds to control eosinophilia has lagged behind other advances. Plant-derived secondary metabolites are the basis for many drugs currently used to treat pathologic conditions, including eosinophilic diseases. Several studies, including our own, have demonstrated that plant extracts and secondary metabolites can reduce eosinophilia and eosinophil recruitment in different experimental animal models. In this review, we summarize these studies and describe the anti-eosinophilic activity of various plant extracts, such as Ginkgo biloba, Allium cepa, and Lafoensia pacari, as well as those of secondary metabolites (compounds isolated from plant extracts), such as quercetin and ellagic acid. In addition, we highlight the medical potential of these plant-derived compounds for treating eosinophil-mediated inflammation, such as asthma and allergy.


Asunto(s)
Eosinofilia/tratamiento farmacológico , Eosinófilos/inmunología , Inflamación/tratamiento farmacológico , Fitoterapia , Extractos Vegetales/uso terapéutico , Plantas Medicinales/inmunología , Animales , Eosinófilos/efectos de los fármacos , Eosinófilos/patología , Humanos , Extractos Vegetales/inmunología , Extractos Vegetales/metabolismo , Plantas Medicinales/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda