Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nature ; 554(7693): 533-537, 2018 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-29443959

RESUMEN

Chronic inflammation increases the risk of developing one of several types of cancer. Inflammatory responses are currently thought to be controlled by mechanisms that rely on transcriptional networks that are distinct from those involved in cell differentiation. The orphan nuclear receptor NR5A2 participates in a wide variety of processes, including cholesterol and glucose metabolism in the liver, resolution of endoplasmic reticulum stress, intestinal glucocorticoid production, pancreatic development and acinar differentiation. In genome-wide association studies, single nucleotide polymorphisms in the vicinity of NR5A2 have previously been associated with the risk of pancreatic adenocarcinoma. In mice, Nr5a2 heterozygosity sensitizes the pancreas to damage, impairs regeneration and cooperates with mutant Kras in tumour progression. Here, using a global transcriptomic analysis, we describe an epithelial-cell-autonomous basal pre-inflammatory state in the pancreas of Nr5a2+/- mice that is reminiscent of the early stages of pancreatitis-induced inflammation and is conserved in histologically normal human pancreases with reduced expression of NR5A2 mRNA. In Nr5a2+/-mice, NR5A2 undergoes a marked transcriptional switch, relocating from differentiation-specific to inflammatory genes and thereby promoting gene transcription that is dependent on the AP-1 transcription factor. Pancreatic deletion of Jun rescues the pre-inflammatory phenotype, as well as binding of NR5A2 to inflammatory gene promoters and the defective regenerative response to damage. These findings support the notion that, in the pancreas, the transcriptional networks involved in differentiation-specific functions also suppress inflammatory programmes. Under conditions of genetic or environmental constraint, these networks can be subverted to foster inflammation.


Asunto(s)
Diferenciación Celular/genética , Regulación de la Expresión Génica , Inflamación/genética , Páncreas/metabolismo , Páncreas/patología , Receptores Citoplasmáticos y Nucleares/metabolismo , Transcriptoma , Células Acinares/metabolismo , Células Acinares/patología , Animales , Cromatina/genética , Cromatina/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/patología , Redes Reguladoras de Genes/genética , Genes jun/genética , Heterocigoto , Humanos , Ratones , Especificidad de Órganos/genética , Pancreatitis/genética , Regiones Promotoras Genéticas/genética , Receptores Citoplasmáticos y Nucleares/deficiencia , Receptores Citoplasmáticos y Nucleares/genética , Factor de Transcripción AP-1/metabolismo
2.
Gut ; 67(4): 707-718, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28159836

RESUMEN

BACKGROUND AND AIMS: c-Myc is highly expressed in pancreatic multipotent progenitor cells (MPC) and in pancreatic cancer. The transition from MPC to unipotent acinar progenitors is associated with c-Myc downregulation; a role for c-Myc in this process, and its possible relationship to a role in cancer, has not been established. DESIGN: Using coimmunoprecipitation assays, we demonstrate that c-Myc and Ptf1a interact. Using reverse transcriptase qPCR, western blot and immunofluorescence, we show the erosion of the acinar programme. To analyse the genomic distribution of c-Myc and Ptf1a and the global transcriptomic profile, we used ChIP-seq and RNA-seq, respectively; validation was performed with ChIP-qPCR and RT-qPCR. Lineage-tracing experiments were used to follow the effect of c-Myc overexpression in preacinar cells on acinar differentiation. RESULTS: c-Myc binds and represses the transcriptional activity of Ptf1a. c-Myc overexpression in preacinar cells leads to a massive erosion of differentiation. In adult Ela1-Myc mice: (1) c-Myc binds to Ptf1a, and Tcf3 is downregulated; (2) Ptf1a and c-Myc display partially overlapping chromatin occupancy but do not bind the same E-boxes; (3) at the proximal promoter of genes coding for digestive enzymes, we find reduced PTF1 binding and increased levels of repressive chromatin marks and PRC2 complex components. Lineage tracing of committed acinar precursors reveals that c-Myc overexpression does not restore multipotency but allows the persistence of a preacinar-like cell population. In addition, mutant KRas can lead to c-Myc overexpression and acinar dysregulation. CONCLUSIONS: c-Myc repression during development is crucial for the maturation of preacinar cells, and c-Myc overexpression can contribute to pancreatic carcinogenesis through the induction of a dedifferentiated state.


Asunto(s)
Células Acinares/metabolismo , Regulación hacia Abajo/genética , Homeostasis , Páncreas/metabolismo , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogénicas c-myc/genética , Animales , Diferenciación Celular , Modelos Animales de Enfermedad , Homeostasis/genética , Ratones , Factores de Transcripción/genética
3.
Gastroenterology ; 147(4): 882-892.e8, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24998203

RESUMEN

BACKGROUND & AIMS: Development of pancreatic ductal adenocarcinoma (PDAC) involves activation of c-Ki-ras2 Kirsten rat sarcoma oncogene homolog (KRAS) signaling, but little is known about the roles of proteins that regulate the activity of oncogenic KRAS. We investigated the activities of proteins that interact with KRAS in PDAC cells. METHODS: We used mass spectrometry to demonstrate that heterogeneous nuclear ribonucleoproteins (HNRNP) A2 and B1 (encoded by the gene HNRNPA2B1) interact with KRAS G12V. We used co-immunoprecipitation analyses to study interactions between HNRNPA2B1 and KRAS in KRAS-dependent and KRAS-independent PDAC cell lines. We knocked down HNRNPA2B1 using small hairpin RNAs and measured viability, anchorage-independent proliferation, and growth of xenograft tumors in mice. We studied KRAS phosphorylation using the Phos-tag system. RESULTS: We found that interactions between HRNPA2B1 and KRAS correlated with KRAS-dependency of some human PDAC cell lines. Knock down of HNRNPA2B1 significantly reduced viability, anchorage-independent proliferation, and formation of xenograft tumors by KRAS-dependent PDAC cells. HNRNPA2B1 knock down also increased apoptosis of KRAS-dependent PDAC cells, inactivated c-akt murine thymoma oncogene homolog 1 signaling via mammalian target of rapamycin, and reduced interaction between KRAS and phosphatidylinositide 3-kinase. Interaction between HNRNPA2B1 and KRAS required KRAS phosphorylation at serine 181. CONCLUSIONS: In KRAS-dependent PDAC cell lines, HNRNPA2B1 interacts with and regulates the activity of KRAS G12V and G12D. HNRNPA2B1 is required for KRAS activation of c-akt murine thymoma oncogene homolog 1-mammalian target of rapamycin signaling, interaction with phosphatidylinositide 3-kinase, and PDAC cell survival and tumor formation in mice. HNRNPA2B1 might be a target for treatment of pancreatic cancer.


Asunto(s)
Carcinoma Ductal Pancreático/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas ras/metabolismo , Animales , Apoptosis , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Adhesión Celular , Proliferación Celular , Supervivencia Celular , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células HeLa , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/genética , Humanos , Ratones , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Fosfatidilinositol 3-Quinasa/metabolismo , Fosforilación , Unión Proteica , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas p21(ras) , Interferencia de ARN , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Factores de Tiempo , Transfección , Carga Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas ras/genética
4.
Biochem J ; 451(3): 395-405, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23339455

RESUMEN

The PTF1 (pancreas transcription factor 1) complex is a master regulator of differentiation of acinar cells, responsible for the production of digestive enzymes. In the adult pancreas, PTF1 contains two pancreas-restricted transcription factors: Ptf1a and Rbpjl. PTF1 recruits P/CAF [p300/CREB (cAMP-response-element-binding protein)-binding protein-associated factor] which acetylates Ptf1a and enhances its transcriptional activity. Using yeast two-hybrid screening, we identified ICAT (inhibitor of ß-catenin and Tcf4) as a novel Ptf1a interactor. ICAT regulates the Wnt pathway and cell proliferation. We validated and mapped the ICAT-Ptf1a interaction in vitro and in vivo. We demonstrated that, following its overexpression in acinar tumour cells, ICAT regulates negatively PTF1 activity in vitro and in vivo. This effect was independent of ß-catenin and was mediated by direct binding to Ptf1a and displacement of P/CAF. ICAT also modulated the expression of Pdx1 and Sox9 in acinar tumour cells. ICAT overexpression reduced the interaction of Ptf1a with Rbpjl and P/CAF and impaired Ptf1a acetylation by P/CAF. ICAT did not affect the subcellular localization of Ptf1a. In human pancreas, ICAT displayed a cell-type-specific distribution; in acinar and endocrine cells, it was nuclear, whereas in ductal cells, it was cytoplasmic. In ductal adenocarcinomas, ICAT displayed mainly a nuclear or mixed distribution and the former was an independent marker of survival. ICAT regulates acinar differentiation and it does so through a novel Wnt pathway-independent mechanism that may contribute to pancreatic disease.


Asunto(s)
Células Acinares/metabolismo , Adenocarcinoma/genética , Regulación Neoplásica de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/genética , Páncreas Exocrino/metabolismo , Neoplasias Pancreáticas/genética , Factores de Transcripción/genética , Células Acinares/patología , Proteínas Adaptadoras Transductoras de Señales , Adenocarcinoma/metabolismo , Adenocarcinoma/mortalidad , Adenocarcinoma/patología , Anciano , Diferenciación Celular , Proliferación Celular , Ensayo de Cambio de Movilidad Electroforética , Femenino , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Persona de Mediana Edad , Páncreas Exocrino/patología , Conductos Pancreáticos/metabolismo , Conductos Pancreáticos/patología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/mortalidad , Neoplasias Pancreáticas/patología , Unión Proteica , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Análisis de Supervivencia , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Técnicas del Sistema de Dos Híbridos , Vía de Señalización Wnt , beta Catenina/genética , beta Catenina/metabolismo , Factores de Transcripción p300-CBP/genética , Factores de Transcripción p300-CBP/metabolismo
5.
Heliyon ; 9(8): e18953, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37609429

RESUMEN

Melanoma is the most aggressive form of skin cancer and the leading cause of death from cutaneous tumors. Several studies have associated alterations in the TERT promoter region (pTERT) with gene overexpression, aggressiveness and poor prognosis of the disease. The aim of this study was to clarify the role of pTERT molecular status in paired samples of primary melanoma and metastasis using tissue and plasma to establish a correlation with disease progression and survival. A total of 88 FFPE tissue samples from 53 patients with advanced melanoma were analyzed. Of these, 35 had paired samples. We also examined cfDNA samples from plasma of 25 patients. We detected a good correlation between primary tumors and metastases in pTERT mutation and methylation status. We were also able to identify pTERT mutations in plasma samples that correlated with mutational status in tissue samples. Interestingly, the C250T mutation was associated with worse survival and higher TERT mRNA expression, compared to the other most common mutation: C228T. In addition, hyper-methylation of the promoter region seems to be related to the progression of pTERT wild type (WT) patients. These results suggest that TERT gene alterations plays an important role during tumor progression, with the detection of the C250T mutation in tissue and plasma as a potential biomarker of poor prognosis in patients with advanced melanoma.

6.
Cancers (Basel) ; 14(14)2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35884568

RESUMEN

Sarcomas are a heterogeneous group of tumors in which the role of ERK5 is poorly studied. To clarify the role of this MAPK in sarcomatous pathology, we used a murine 3-methyl-cholanthrene (3MC)-induced sarcoma model. Our data show that 3MC induces pleomorphic sarcomas with muscle differentiation, showing an increased expression of ERK5. Indeed, this upregulation was also observed in human sarcomas of muscular origin, such as leiomyosarcoma or rhabdomyosarcoma. Moreover, in cell lines derived from these 3MC-induced tumors, abrogation of Mapk7 expression by using specific shRNAs decreased in vitro growth and colony-forming capacity and led to a marked loss of tumor growth in vivo. In fact, transcriptomic profiling in ERK5 abrogated cell lines by RNAseq showed a deregulated gene expression pattern for key biological processes such as angiogenesis, migration, motility, etc., correlating with a better prognostic in human pathology. Finally, among the various differentially expressed genes, Klf2 is a key mediator of the biological effects of ERK5 as indicated by its specific interference, demonstrating that the ERK5-KLF2 axis is an important determinant of sarcoma biology that should be further studied in human pathology.

8.
Mol Cancer Ther ; 15(2): 323-33, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26769123

RESUMEN

Choline kinase α (CHKα) plays a crucial role in the regulation of membrane phospholipid synthesis and has oncogenic properties in vitro. We have analyzed the expression of CHKα in cell lines derived from pancreatic ductal adenocarcinoma (PDAC) and have found increased CHKα expression, associated with differentiation. CHKα protein expression was directly correlated with sensitivity to MN58b, a CHKα inhibitor that reduced cell growth through the induction of apoptosis. Accordingly, CHKα knockdown led to reduced drug sensitivity. In addition, we found that gemcitabine-resistant PDAC cells displayed enhanced sensitivity to CHKα inhibition and, in vitro, MN58b had additive or synergistic effects with gemcitabine, 5-fluorouracil, and oxaliplatin, three active drugs in the treatment of PDAC. Using tissue microarrays, CHKα was found to be overexpressed in 90% of pancreatic tumors. While cytoplasmic CHKα did not relate to survival, nuclear CHKα distribution was observed in 43% of samples and was associated with longer survival, especially among patients with well/moderately differentiated tumors. To identify the mechanisms involved in resistance to CHKα inhibitors, we cultured IMIM-PC-2 cells with increasingly higher concentrations of MN58b and isolated a subline with a 30-fold higher IC50. RNA-Seq analysis identified upregulation of ABCB1 and ABCB4 multidrug resistance transporters, and functional studies confirmed that their upregulation is the main mechanism involved in resistance. Overall, our findings support the notion that CHKα inhibition merits further attention as a therapeutic option in patients with PDAC and that expression levels may predict response.


Asunto(s)
Butanos/farmacología , Carcinoma Ductal Pancreático/enzimología , Colina Quinasa/metabolismo , Inhibidores Enzimáticos/farmacología , Neoplasias Pancreáticas/enzimología , Compuestos de Piridinio/farmacología , Apoptosis , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Línea Celular Tumoral , Núcleo Celular/metabolismo , Supervivencia Celular/efectos de los fármacos , Colina Quinasa/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Sinergismo Farmacológico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias Pancreáticas/tratamiento farmacológico , Análisis de Supervivencia , Regulación hacia Arriba
9.
Cancer Res ; 73(7): 2357-67, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23370328

RESUMEN

The exocrine pancreas can undergo acinar-to-ductal metaplasia (ADM), as in the case of pancreatitis where precursor lesions of pancreatic ductal adenocarcinoma (PDAC) can arise. The NAD(+)-dependent protein deacetylase Sirtuin-1 (Sirt1) has been implicated in carcinogenesis with dual roles depending on its subcellular localization. In this study, we examined the expression and the role of Sirt1 in different stages of pancreatic carcinogenesis, i.e. ADM models and established PDAC. In addition, we analyzed the expression of KIAA1967, a key mediator of Sirt1 function, along with potential Sirt1 downstream targets. Sirt1 was co-expressed with KIAA1967 in the nuclei of normal pancreatic acinar cells. In ADM, Sirt1 underwent a transient nuclear-to-cytoplasmic shuttling. Experiments where during ADM, we enforced repression of Sirt1 shuttling, inhibition of Sirt1 activity or modulation of its expression, all underscore that the temporary decrease of nuclear and increase of cytoplasmic Sirt1 stimulate ADM. Our results further underscore that important transcriptional regulators of acinar differentiation, that is, Pancreatic transcription factor-1a and ß-catenin can be deacetylated by Sirt1. Inhibition of Sirt1 is effective in suppression of ADM and in reducing cell viability in established PDAC tumors. KIAA1967 expression is differentially downregulated in PDAC and impacts on the sensitivity of PDAC cells to the Sirt1/2 inhibitor Tenovin-6. In PDAC, acetylation of ß-catenin is not affected, unlike p53, a well-characterized Sirt1-regulated protein in tumor cells. Our results reveal that Sirt1 is an important regulator and potential therapeutic target in pancreatic carcinogenesis.


Asunto(s)
Células Acinares/citología , Biomarcadores de Tumor/metabolismo , Carcinoma Ductal Pancreático/patología , Metaplasia/patología , Neoplasias Pancreáticas/patología , Pancreatitis/patología , Sirtuina 1/metabolismo , Células Acinares/metabolismo , Animales , Biomarcadores de Tumor/genética , Western Blotting , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Diferenciación Celular , Núcleo Celular/metabolismo , Supervivencia Celular , Células Cultivadas , Citoplasma/metabolismo , Humanos , Técnicas para Inmunoenzimas , Metaplasia/genética , Metaplasia/metabolismo , Ratones , Páncreas , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Pancreatitis/genética , Pancreatitis/metabolismo , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sirtuina 1/genética
10.
Int J Cancer ; 119(2): 455-62, 2006 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-16477626

RESUMEN

Antiangiogenic therapy is nowadays one of the most active fields in cancer research. The first strategies, aimed at inhibiting tumor vascularization, included upregulation of endogenous inhibitors and blocking of the signals delivered by angiogenic factors. But interaction between endothelial cells and their surrounding extracellular matrix also plays a critical role in the modulation of the angiogenic process. This study introduces a new concept to enhance the efficacy of antibody-based antiangiogenic cancer therapy strategies, taking advantage of a key molecular event occurring in the tumor context: the proteolysis of collagen XVIII, which releases the endogenous angiogenesis inhibitor endostatin. By fusing the collagen XVIII NC1 domain to an antiangiogenic single-chain antibody, a multispecific agent was generated, which was efficiently processed by tumor-associated proteinases to produce monomeric endostatin and fully functional trimeric antibody fragments. It was demonstrated that the combined production in the tumor area of complementary antiangiogenic agents from a single molecular entity secreted by gene-modified cells resulted in enhanced antitumor effects. These results indicate that tailoring recombinant antibodies with extracellular matrix-derived scaffolds is an effective approach to convert tumor progression associated processes into molecular clues for improving antibody-based therapies.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Anticuerpos/farmacología , Colágeno Tipo XVIII/metabolismo , Endostatinas/metabolismo , Matriz Extracelular/metabolismo , Fibrosarcoma/tratamiento farmacológico , Ingeniería de Proteínas , Proteínas Recombinantes de Fusión/farmacología , Animales , Anticuerpos/metabolismo , Antineoplásicos/farmacología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Cromatografía en Gel , Colágeno Tipo XVIII/inmunología , Endostatinas/biosíntesis , Femenino , Fibrosarcoma/irrigación sanguínea , Humanos , Ratones , Ratones Endogámicos C57BL , Trasplante de Neoplasias , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/síntesis química , Transfección
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda