Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
J Appl Microbiol ; 134(6)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37218693

RESUMEN

6-methylsalicylic acid (6-MSA) is a small, simple polyketide produced by a broad spectrum of fungal species. Since fungi obtained the ability to synthesize 6-MSA from bacteria through a horizontal gene transfer event, it has developed into a multipurpose metabolic hub from where numerous complex compounds are produced. The most relevant metabolite from a human perspective is the small lactone patulin as it is one of the most potent mycotoxins. Other important end products derived from 6-MSA include the small quinone epoxide terreic acid and the prenylated yanuthones. The most advanced modification of 6-MSA is observed in the aculin biosynthetic pathway, which is mediated by a non-ribosomal peptide synthase and a terpene cyclase. In this short review, we summarize for the first time all the possible pathways that takes their onset from 6-MSA and provide a synopsis of the responsible gene clusters and derive the resulting biosynthetic pathways.


Asunto(s)
Patulina , Humanos , Familia de Multigenes , Bacterias/genética , Sintasas Poliquetidas/genética
2.
Microb Cell Fact ; 21(1): 9, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-35012550

RESUMEN

The biosynthetic pathways for the fungal polyketides bikaverin and bostrycoidin, from Fusarium verticillioides and Fusarium solani respectively, were reconstructed and heterologously expressed in S. cerevisiae alongside seven different phosphopantetheinyl transferases (PPTases) from a variety of origins spanning bacterial, yeast and fungal origins. In order to gauge the efficiency of the interaction between the ACP-domains of the polyketide synthases (PKS) and PPTases, each were co-expressed individually and the resulting production of target polyketides were determined after 48 h of growth. In co-expression with both biosynthetic pathways, the PPTase from Fusarium verticillioides (FvPPT1) proved most efficient at producing both bikaverin and bostrycoidin, at 1.4 mg/L and 5.9 mg/L respectively. Furthermore, the remaining PPTases showed the ability to interact with both PKS's, except for a single PKS-PPTase combination. The results indicate that it is possible to boost the production of a target polyketide, simply by utilizing a more optimal PPTase partner, instead of the commonly used PPTases; NpgA, Gsp and Sfp, from Aspergillus nidulans, Brevibacillus brevis and Bacillus subtilis respectively.


Asunto(s)
Proteínas Bacterianas/metabolismo , Fusarium/enzimología , Sintasas Poliquetidas/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Xantonas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Vías Biosintéticas , Clonación Molecular , Fusarium/genética , Isoquinolinas/metabolismo , Modelos Moleculares , Sintasas Poliquetidas/química , Sintasas Poliquetidas/genética , Dominios Proteicos , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/química , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética
3.
Fungal Genet Biol ; 155: 103602, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34214671

RESUMEN

Fusarium fujikuroi and Fusarium graminearum are agronomically important plant pathogens, both infecting important staple food plants and thus leading to huge economic losses worldwide. F.fujikuroi belongs to the Fusarium fujikuroi species complex (FFSC) and causes bakanae disease on rice, whereas F.graminearum, a member of the Fusarium graminearum species complex (FGSC), is the causal agent of Fusarium Head Blight (FHB) disease on wheat, barley and maize. In recent years, the importance of chromatin regulation became evident in the plant-pathogen interaction. Several processes, including posttranslational modifications of histones, have been described as regulators of virulence and the biosynthesis of secondary metabolites. In this study, we have functionally characterised methylation of lysine 20 histone 4 (H4K20me) in both Fusarium species. We identified the respective genes solely responsible for H4K20 mono-, di- and trimethylation in F.fujikuroi (FfKMT5) and F.graminearum (FgKMT5). We show that loss of Kmt5 affects colony growth in F.graminearum while this is not the case for F.fujikuroi. Similarly, FgKmt5 is required for full virulence in F.graminearum as Δfgkmt5 is hypovirulent on wheat, whereas the F.fujikuroi Δffkmt5 strain did not deviate from the wild type during rice infection. Lack of Kmt5 had distinct effects on the secondary metabolism in both plant pathogens with the most pronounced effects on fusarin biosynthesis in F.fujikuroi and zearalenone biosynthesis in F.graminearum. Next to this, loss of Kmt5 resulted in an increased tolerance towards oxidative and osmotic stress in both species.


Asunto(s)
Fusarium , Fusarium/genética , Metiltransferasas , Enfermedades de las Plantas/genética , Metabolismo Secundario/genética , Triticum/genética
4.
Int J Mol Sci ; 21(20)2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-33066643

RESUMEN

Through stepwise recreation of the biosynthetic gene cluster containing PKS3 from Fusarium solani, it was possible to produce the core scaffold compound of bostrycoidin, a red aza-anthraquinone pigment in Saccharomyces cerevisiae. This was achieved through sequential transformation associated recombination (TAR) cloning of FvPPT, fsr1, fsr2, and fsr3 into the pESC-vector system, utilizing the inducible bidirectional galactose promoter for heterologous expression in S. cerevisiae. The production of the core metabolite bostrycoidin was investigated through triplicate growth cultures for 1-4 days, where the maximum titer of bostrycoidin was achieved after 2 days of induction, yielding 2.2 mg/L.


Asunto(s)
Clonación Molecular , Proteínas Fúngicas/genética , Fusarium/genética , Naftoquinonas/metabolismo , Sintasas Poliquetidas/genética , Proteínas Fúngicas/metabolismo , Isoquinolinas/metabolismo , Familia de Multigenes , Sintasas Poliquetidas/metabolismo , Regiones Promotoras Genéticas , Saccharomyces cerevisiae/genética
5.
Curr Genet ; 65(6): 1263-1280, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31139896

RESUMEN

The eukaryotic ascomycete genus Fusarium comprises many species capable of producing secondary metabolites important for agriculture, health, and biotechnology. Filamentous fungi share common physiological features, but even within Fusarium, there are significant differences that affect the success of biotechnological methods used to unravel biosynthetic pathways. The aim of this review is to describe the different methods that have successfully been used throughout the genus Fusarium to identify the products of novel biosynthetic pathways. The results are presented in tables to give the reader an overview and thereby enable the selection of the most appropriate method to the problem, regarding both species and target products. Significant work has gone into characterization of the underlying molecular genetics of secondary metabolites, but still, the products of only 25-30% of predicted gene clusters have been identified. In this review, we highlight existing knowledge and encourage the development of new techniques and strategies to provide access to the many unknown polyketide and non-ribosomal peptide products that await discovery in Fusarium.


Asunto(s)
Fusarium/genética , Biosíntesis de Péptidos Independientes de Ácidos Nucleicos , Péptidos/química , Policétidos/química , Policétidos/metabolismo , Vías Biosintéticas/genética , Fusarium/metabolismo , Regulación Fúngica de la Expresión Génica , Técnicas de Inactivación de Genes , Histonas/química , Péptido Sintasas/genética , Péptidos/metabolismo , Sintasas Poliquetidas/genética , Protoplastos , Transformación Genética
6.
Fungal Genet Biol ; 132: 103248, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31279974

RESUMEN

Filamentous fungi such as species from the genus Fusarium are capable of producing a wide palette of interesting metabolites relevant to health, agriculture and biotechnology. Secondary metabolites are formed from large synthase/synthetase enzymes often encoded in gene clusters containing additional enzymes cooperating in the metabolite's biosynthesis. The true potential of fungal metabolomes remain untapped as the majority of secondary metabolite gene clusters are silent under standard laboratory growth conditions. One way to achieve expression of biosynthetic pathways is to clone the responsible genes and express them in a well-suited heterologous host, which poses a challenge since Fusarium polyketide synthase and non-ribosomal peptide synthetase gene clusters can be large (e.g. as large as 80 kb) and comprise several genes necessary for product formation. The major challenge associated with heterologous expression of fungal biosynthesis pathways is thus handling and cloning large DNA sequences. In this paper we present the successful workflow for cloning, reconstruction and heterologous production of two previously characterized Fusarium pseudograminearum natural product pathways in Fusarium graminearum. In vivo yeast recombination enabled rapid assembly of the W493 (NRPS32-PKS40) and the Fusarium Cytokinin gene clusters. F. graminearum transformants were obtained through protoplast-mediated and Agrobacterium tumefaciens-mediated transformation. Whole genome sequencing revealed isolation of transformants carrying intact copies the gene clusters was possible. Known Fusarium cytokinin metabolites; fusatin, 8-oxo-fusatin, 8-oxo-isopentenyladenine, fusatinic acid together with cis- and trans-zeatin were detected by liquid chromatography and mass spectrometry, which confirmed gene functionality in F. graminearum. In addition the non-ribosomal lipopeptide products W493 A and B was heterologously produced in similar amounts to that observed in the F. pseudograminearum doner. The Fusarium pan-genome comprises more than 60 uncharacterized putative secondary metabolite gene clusters. We nominate the well-characterized F. graminearum as a heterologous expression platform for Fusarium secondary metabolite gene clusters, and present our experience cloning and introducing gene clusters into this species. We expect the presented methods will inspire future endevours in heterologous production of Fusarium metabolites and potentially aid the production and characterization of novel natural products.


Asunto(s)
Vías Biosintéticas/genética , Fusarium/genética , Regulación Fúngica de la Expresión Génica , Familia de Multigenes , Proteínas Fúngicas/genética , Fusarium/enzimología , Genoma Fúngico , Péptido Sintasas/genética , Sintasas Poliquetidas/genética , Recombinación Genética
7.
Molecules ; 24(19)2019 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-31561557

RESUMEN

Chemical analyses of Fusarium avenaceum grown on banana medium resulted in eight novel spiroleptosphols, T1, T2 and U-Z (1-8). The structures were elucidated by a combination of high-resolution mass spectrometric data and 1- and 2-D NMR experiments. The relative stereochemistry was assigned by 1H coupling and NOESY/ROESY experiments. Absolute stereochemistry established for 7 by vibrational circular dichroism was found analogous to that of the putative polyketide spiroleptosphol from Leptosphaeria doliolum.


Asunto(s)
Fusarium/química , Compuestos de Espiro/química , Fenómenos Químicos , Cromatografía Líquida de Alta Presión , Fusarium/metabolismo , Espectroscopía de Resonancia Magnética , Redes y Vías Metabólicas , Estructura Molecular , Compuestos de Espiro/metabolismo
8.
Molecules ; 23(9)2018 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-30200525

RESUMEN

Genome sequencing of the genus Fusarium has revealed a great capacity for discovery of new natural products of potential economical and therapeutic importance. Several of these are unknown. In this study, we investigated the product of the PKS8 gene in Fusarium graminearum, which was recently linked to gibepyrones in F. fujikuroi. Genomic analyses showed that PKS8 constitutes a stand-alone gene in F. graminearum and related species. Overexpression of PKS8 resulted in production of gibepyrones A, B, D, G and prolipyrone B, which could not be detected in the wild type strain. Our results suggest that PKS8 produces the entry compound gibepyrone A, which is subsequently oxidized by one or several non-clustering cytochrome P450 monooxygenases ending with prolipyrone B.


Asunto(s)
Fusarium/enzimología , Fusarium/genética , Genes Fúngicos , Sintasas Poliquetidas/genética , Pironas/metabolismo , Vías Biosintéticas/genética , Familia de Multigenes , Oxidación-Reducción , Sintasas Poliquetidas/metabolismo , Espectroscopía de Protones por Resonancia Magnética , Pironas/química
9.
J Nat Prod ; 80(7): 2131-2135, 2017 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-28708398

RESUMEN

Production of chrysogine has been reported from several fungal genera including Penicillium, Aspergillus, and Fusarium. Anthranilic acid and pyruvic acid, which are expected precursors of chrysogine, enhance production of this compound. A possible route for the biosynthesis using these substrates is via a nonribosomal peptide synthetase (NRPS). Through comparative analysis of the NRPSs from genome-sequenced producers of chrysogine we identified a candidate NRPS cluster comprising five additional genes named chry2-6. Deletion of the two-module NRPS (NRPS14 = chry1) abolished chrysogine production in Fusarium graminearum, indicating that the gene cluster is responsible for chrysogine biosynthesis. Overexpression of NRPS14 enhanced chrysogine production, suggesting that the NRPS is the bottleneck in the biosynthetic pathway.


Asunto(s)
Alcaloides/metabolismo , Péptido Sintasas/metabolismo , Quinazolinonas/metabolismo , Alcaloides/química , Aspergillus/química , Aspergillus/genética , Vías Biosintéticas , Fusarium/química , Fusarium/genética , Estructura Molecular , Familia de Multigenes , Penicillium/química , Penicillium/genética , Ácido Pirúvico/metabolismo , Quinazolinonas/química , ortoaminobenzoatos/metabolismo
10.
Curr Genet ; 62(4): 799-807, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26936154

RESUMEN

Sansalvamide is a cyclic pentadepsipeptide produced by Fusarium solani and has shown promising results as potential anti-cancer drug. The biosynthetic pathway has until now remained unidentified, but here we used an Agrobacterium tumefaciens-mediated transformation (ATMT) approach to generate knockout mutants of two candidate non-ribosomal peptide synthetases (NRPS29 and NRPS30). Comparative studies of secondary metabolites in the two deletion mutants and wild type confirmed the absence of sansalvamide in the NRPS30 deletion mutant, implicating this synthetase in the biosynthetic pathway for sansalvamide. Sansalvamide is structurally related to the cyclic hexadepsipeptide destruxin, which both contain an α-hydroxyisocaproic acid (HICA) unit. A gene cluster responsible for destruxin production has previously been identified in Metarhizium robertsii together with a hypothetical biosynthetic pathway. Using comparative bioinformatic analyses of the catalytic domains in the destruxin and sansalvamide NRPSs, we were able to propose a model for sansalvamide biosynthesis. Orthologues of the gene clusters were also identified in species from several other genera including Acremonium chrysogenum and Trichoderma virens, which suggests that the ability to produce compounds related to destruxin and sansalvamide is widespread.


Asunto(s)
Depsipéptidos/biosíntesis , Depsipéptidos/farmacología , Fusarium/genética , Fusarium/metabolismo , Péptido Sintasas/genética , Péptido Sintasas/metabolismo , Antineoplásicos , Depsipéptidos/química , Regulación Fúngica de la Expresión Génica , Genoma Fúngico , Metaboloma , Metabolómica , Modelos Biológicos , Familia de Multigenes , Filogenia , Metabolismo Secundario , Eliminación de Secuencia , Transcripción Genética
11.
Molecules ; 21(12)2016 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-27983606

RESUMEN

Fusarielins are polyketides with a decalin core produced by various species of Aspergillus and Fusarium. Although the responsible gene cluster has been identified, the biosynthetic pathway remains to be elucidated. In the present study, members of the gene cluster were deleted individually in a Fusarium graminearum strain overexpressing the local transcription factor. The results suggest that a trans-acting enoyl reductase (FSL5) assists the polyketide synthase FSL1 in biosynthesis of a polyketide product, which is released by hydrolysis by a trans-acting thioesterase (FSL2). Deletion of the epimerase (FSL3) resulted in accumulation of an unstable compound, which could be the released product. A novel compound, named prefusarielin, accumulated in the deletion mutant of the cytochrome P450 monooxygenase FSL4. Unlike the known fusarielins from Fusarium, this compound does not contain oxygenized decalin rings, suggesting that FSL4 is responsible for the oxygenation.


Asunto(s)
Fusarium/genética , Familia de Multigenes , Policétidos/metabolismo , Aspergillus/genética , Genes Fúngicos , Estructura Molecular , Policétidos/química
12.
Fungal Genet Biol ; 75: 20-9, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25543026

RESUMEN

Members of the genus Fusarium produce a plethora of bioactive secondary metabolites, which can be harmful to humans and animals or have potential in drug development. In this study we have performed comparative analyses of polyketide synthases (PKSs) and non-ribosomal peptide synthetases (NRPSs) from ten different Fusarium species including F. graminearum (two strains), F. verticillioides, F. solani, F. culmorum, F. pseudograminearum, F. fujikuroi, F. acuminatum, F. avenaceum, F. equiseti, and F. oxysporum (12 strains). This led to identification of 52 NRPS and 52 PKSs orthology groups, respectively, and although not all PKSs and NRPSs are assumed to be intact or functional, the analyses illustrate the huge secondary metabolite potential in Fusarium. In our analyses we identified a core collection of eight NRPSs (NRPS2-4, 6, 10-13) and two PKSs (PKS3 and PKS7) that are conserved in all strains analyzed in this study. The identified PKSs and NRPSs were named based on a previously developed classification system (www.FusariumNRPSPKS.dk). We suggest this system be used when PKSs and NRPSs have to be classified in future sequenced Fusarium strains. This system will facilitate identification of orthologous and non-orthologous NRPSs and PKSs from newly sequenced Fusarium genomes and will aid the scientific community by providing a common nomenclature for these two groups of genes/enzymes.


Asunto(s)
Fusarium/genética , Péptido Sintasas/clasificación , Péptido Sintasas/genética , Sintasas Poliquetidas/clasificación , Sintasas Poliquetidas/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/clasificación , Proteínas Fúngicas/genética , Fusarium/química , Fusarium/clasificación , Fusarium/enzimología , Genes Fúngicos , Filogenia , Terminología como Asunto
13.
Mar Drugs ; 13(7): 4331-43, 2015 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-26184239

RESUMEN

Scopularide A is a promising potent anticancer lipopeptide isolated from a marine derived Scopulariopsis brevicaulis strain. The compound consists of a reduced carbon chain (3-hydroxy-methyldecanoyl) attached to five amino acids (glycine, l-valine, d-leucine, l-alanine, and l-phenylalanine). Using the newly sequenced S. brevicaulis genome we were able to identify the putative biosynthetic gene cluster using genetic information from the structurally related emericellamide A from Aspergillus nidulans and W493-B from Fusarium pseudograminearum. The scopularide A gene cluster includes a nonribosomal peptide synthetase (NRPS1), a polyketide synthase (PKS2), a CoA ligase, an acyltransferase, and a transcription factor. Homologous recombination was low in S. brevicaulis so the local transcription factor was integrated randomly under a constitutive promoter, which led to a three to four-fold increase in scopularide A production. This indirectly verifies the identity of the proposed biosynthetic gene cluster.


Asunto(s)
Depsipéptidos/genética , Scopulariopsis/genética , Cromatografía Liquida , Depsipéptidos/biosíntesis , Depsipéptidos/aislamiento & purificación , Espectrometría de Masas , Familia de Multigenes/genética , Scopulariopsis/metabolismo
14.
Fungal Genet Biol ; 70: 24-31, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25011010

RESUMEN

The available genome sequences show that the number of secondary metabolite genes in filamentous fungi vastly exceeds the number of known products. This is also true for the global plant pathogenic fungus Fusarium graminearum, which contains 15 polyketide synthase (PKS) genes, of which only 6 have been linked to products. To help remedy this, we focused on PKS14, which has only been shown to be expressed during plant infections or when cultivated on rice or corn meal (RM) based media. To enhance the production of the resulting product we introduced a constitutive promoter in front of PKS14 and cultivated two of the resulting mutants on RM medium. This led to the production of two compounds, which were only detected in the PKS14 overexpressing mutants and not in the wild type or PKS14 deletion mutants. The two compounds were tentatively identified as orsellinic acid and orcinol by comparing spectroscopic data (mass spectroscopy and chromatography) to authentic standards. NMR analysis of putative orcinol isolated from the PKS14 overexpressing mutant supported our identification. Orcinol and orsellinic acid, not previously detected in Fusarium, have primarily been detected in lichen fungi. Orsellinic acid is hypothesized to be the PKS release product which is transformed to orcinol through decarboxylation. Phylogenetic analyses of PKSs placed PKS14 in a subclade of known OA synthases. Expression analysis by microarray of 55 experiments identified seven genes near PKS14 that were expressed in a similar manner. One of the seven genes encodes a predicted carboxylase, which could be responsible for transforming orsellinic acid to orcinol.


Asunto(s)
Proteínas Fúngicas/metabolismo , Fusarium/metabolismo , Sintasas Poliquetidas/metabolismo , Resorcinoles/metabolismo , Descarboxilación , Proteínas Fúngicas/genética , Fusarium/genética , Familia de Multigenes , Mutación , Filogenia , Sintasas Poliquetidas/genética
15.
J Nat Prod ; 77(12): 2619-25, 2014 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-25412204

RESUMEN

The closely related species Fusarium graminearum and Fusarium pseudograminearum differ in that each contains a gene cluster with a polyketide synthase (PKS) and a nonribosomal peptide synthetase (NRPS) that is not present in the other species. To identify their products, we deleted PKS6 and NRPS7 in F. graminearum and NRPS32 in F. pseudograminearum. By comparing the secondary metabolite profiles of the strains we identified the resulting product in F. graminearum as fusaristatin A, and as W493 A and B in F. pseudograminearum. These lipopeptides have previously been isolated from unidentified Fusarium species. On the basis of genes in the putative gene clusters we propose a model for biosynthesis where the polyketide product is shuttled to the NPRS via a CoA ligase and a thioesterase in F. pseudograminearum. In F. graminearum the polyketide is proposed to be directly assimilated by the NRPS.


Asunto(s)
Depsipéptidos/aislamiento & purificación , Fusarium/metabolismo , Lipopéptidos/aislamiento & purificación , Familia de Multigenes , Péptidos Cíclicos/aislamiento & purificación , Sintasas Poliquetidas/metabolismo , Depsipéptidos/química , Fusarium/genética , Lipopéptidos/química , Estructura Molecular , Péptido Sintasas/metabolismo , Péptidos Cíclicos/química
16.
Front Fungal Biol ; 5: 1327777, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38586602

RESUMEN

Fungal polyketides are a large group of secondary metabolites, valuable due to their diverse spectrum of pharmacological activities. Polyketide biosynthesis in filamentous fungi presents some challenges: small yield and low-purity titers. To tackle these issues, we switched to the yeast Yarrowia lipolytica, an easily cultivable heterologous host. As an oleaginous yeast, Y. lipolytica displays a high flux of acetyl- and malonyl-CoA precursors used in lipid synthesis. Likewise, acetyl- and malonyl-CoA are the building blocks of many natural polyketides, and we explored the possibility of redirecting this flux toward polyketide production. Despite its promising prospect, Y. lipolytica has so far only been used for heterologous expression of simple type III polyketide synthases (PKSs) from plants. Therefore, we decided to evaluate the potential of Y. lipolytica by targeting the more complex fungal polyketides synthesized by type I PKSs. We employed a CRISPR-Cas9-mediated genome editing method to achieve markerless gene integration of the genes responsible for bostrycoidin biosynthesis in Fusarium solani (fsr1, fsr2, and fsr3) and 6-methylsalicylic acid (6-MSA) biosynthesis in Aspergillus hancockii (6MSAS). Moreover, we attempted titer optimization through metabolic engineering by overexpressing two enzymes, TGL4 and AOX2, involved in lipid ß-oxidation, but we did not observe an effect on polyketide production. With maximum titers of 403 mg/L 6-MSA and 35 mg/L bostrycoidin, the latter being substantially higher than our previous results in Saccharomyces cerevisiae (2.2 mg/L), this work demonstrates the potential of Y. lipolytica as a platform for heterologous production of complex fungal polyketides.

17.
J Microbiol Biol Educ ; 24(3)2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38108002

RESUMEN

Recombinant plasmids are essential tools in molecular biotechnology, and reliable plasmid assembly methods have, therefore, become a prerequisite for the successful cloning and transfer of genes. Among the multitude of available plasmid assembly strategies, in vivo homologous recombinational cloning in yeast has emerged as a cost-effective and relatively simple method. Since we use this method routinely in our group for assembling large plasmids with secondary metabolite gene clusters and for direct heterologous production of polyketides in Saccharomyces cerevisiae, we developed an exercise module for undergraduate students where they would get hands-on experience with these molecular practices. The exercises target several molecular techniques, including PCR, restriction enzyme digestion, and yeast recombinational cloning. The students will learn about plasmid assembly and yeast transformation methods by performing these experiments while inherently acquiring new skills valuable for their subsequent laboratory work or projects.

18.
Front Fungal Biol ; 4: 1264366, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38025899

RESUMEN

As one of the grain crop pathogenic fungi with the greatest impacts on agricultural economical as well as human health, an elaborate understanding of the life cycle and subsequent metabolome of Fusarium graminearum is of great interest. Throughout the lifetime of the fungus, it is known to produce a wide array of secondary metabolites, including polyketides. One of the F. graminearum polyketides which has remained a mystery until now has been elucidated in this work. Previously, it was suggested that the biosynthetic product of the PKS2 gene cluster was involved in active mycelial growth, the exact mechanism, however, remained unclear. In our work, disruption and overexpression of the PKS2 gene in F. graminearum enabled structural elucidation of a linear and a cyclic tetraketide with a double methyl group, named fugralin A and B, respectively. Further functional characterization showed that the compounds are not produced during infection, and that deletion and overexpression did not affect pathogenicity or visual growth. The compounds were shown to be volatile, which could point to possible functions that can be investigated further in future studies.

19.
Environ Microbiol ; 14(5): 1159-70, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22252016

RESUMEN

Like many other filamentous fungi, Fusarium graminearum has the genetic potential to produce a vast array of unknown secondary metabolites. A promising approach to determine the nature of these is to activate silent secondary metabolite gene clusters through constitutive expression of cluster specific transcription factors. We have developed a system in which an expression cassette containing the transcription factor from the targeted PKS cluster disrupts the production of the red mycelium pigment aurofusarin. This aids with identification of mutants as they appear as white colonies and metabolite analyses where aurofusarin and its intermediates are normally among the most abundant compounds. The system was used for constitutive expression of the local transcription factor from the PKS9 cluster (renamed FSL) leading to production of three novel fusarielins, F, G and H. This group of compounds has not previously been reported from F. graminearum or linked to a biosynthetic gene in any fungal species. The toxicity of the three novel fusarielins was examined against colorectal cancer cell lines where fusarielin H was more potent than fusarielin F and G.


Asunto(s)
Proteínas Fúngicas/biosíntesis , Fusarium/enzimología , Fusarium/genética , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo , Células CACO-2 , Supervivencia Celular/efectos de los fármacos , Proteínas Fúngicas/química , Proteínas Fúngicas/toxicidad , Regulación Fúngica de la Expresión Génica , Genes Fúngicos/genética , Células HT29 , Humanos , Mutación
20.
Fungal Genet Biol ; 49(8): 613-8, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22713716

RESUMEN

Colonies of Fusarium species often appear red due to production of pigments, such as aurofusarin or bikaverin. The primary compounds in these biosynthetic pathways are YWA1 and pre-bikaverin, respectively, catalyzed by two multidomain polyketide synthases (PKSs), which both have a claisen-type cyclase domain (CLC) in their N terminal. Disruption of the CLC domains has been shown to result in formation of the lactones citreoisocoumarin and SMA93 instead of YWA1 and pre-bikaverin. In the present study we have discovered a medium with low nitrogen content which partially redirects the aurofusarin and bikaverin pathways to produce citreoisocoumarin and SMA93, respectively. This is first time that SMA93 is identified in a fungus and we suggest that it is renamed bikisocoumarin, as it is derived from the bikaverin pathway. The redirection of the aurofusarin and bikaverin biosynthetic pathways was reverted by adding inorganic nitrogen to the medium, whereas organic nitrogen in form of arginine or glutamine stimulated isocoumarin production. This suggests that nitrogen source can influence isocoumarin production. Production of isocoumarin was also repressed by alkaline conditions, which suggests that nitrogen supply is not the sole regulatory factor in the pathway. The redirection was observed in all producers of aurofusarin (6) and bikaverin (2), suggesting the presence of a conserved regulatory mechanism.


Asunto(s)
Fusarium/metabolismo , Isocumarinas/metabolismo , Pigmentos Biológicos/biosíntesis , Concentración de Iones de Hidrógeno , Nitrógeno/metabolismo , Pigmentos Biológicos/química , Sintasas Poliquetidas/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda