RESUMEN
Copy number variants (CNVs) are associated with syndromic and severe neurological and psychiatric disorders (SNPDs), such as intellectual disability, epilepsy, schizophrenia, and bipolar disorder. Although considered high-impact, CNVs are also observed in the general population. This presents a diagnostic challenge in evaluating their clinical significance. To estimate the phenotypic differences between CNV carriers and non-carriers regarding general health and well-being, we compared the impact of SNPD-associated CNVs on health, cognition, and socioeconomic phenotypes to the impact of three genome-wide polygenic risk score (PRS) in two Finnish cohorts (FINRISK, n = 23,053 and NFBC1966, n = 4895). The focus was on CNV carriers and PRS extremes who do not have an SNPD diagnosis. We identified high-risk CNVs (DECIPHER CNVs, risk gene deletions, or large [>1 Mb] CNVs) in 744 study participants (2.66%), 36 (4.8%) of whom had a diagnosed SNPD. In the remaining 708 unaffected carriers, we observed lower educational attainment (EA; OR = 0.77 [95% CI 0.66-0.89]) and lower household income (OR = 0.77 [0.66-0.89]). Income-associated CNVs also lowered household income (OR = 0.50 [0.38-0.66]), and CNVs with medical consequences lowered subjective health (OR = 0.48 [0.32-0.72]). The impact of PRSs was broader. At the lowest extreme of PRS for EA, we observed lower EA (OR = 0.31 [0.26-0.37]), lower-income (OR = 0.66 [0.57-0.77]), lower subjective health (OR = 0.72 [0.61-0.83]), and increased mortality (Cox's HR = 1.55 [1.21-1.98]). PRS for intelligence had a similar impact, whereas PRS for schizophrenia did not affect these traits. We conclude that the majority of working-age individuals carrying high-risk CNVs without SNPD diagnosis have a modest impact on morbidity and mortality, as well as the limited impact on income and educational attainment, compared to individuals at the extreme end of common genetic variation. Our findings highlight that the contribution of traditional high-risk variants such as CNVs should be analyzed in a broader genetic context, rather than evaluated in isolation.
Asunto(s)
Variaciones en el Número de Copia de ADN , Esquizofrenia , Cognición , Variaciones en el Número de Copia de ADN/genética , Escolaridad , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Humanos , Herencia Multifactorial/genética , Esquizofrenia/genéticaRESUMEN
There is a limited understanding about the impact of rare protein-truncating variants across multiple phenotypes. We explore the impact of this class of variants on 13 quantitative traits and 10 diseases using whole-exome sequencing data from 100,296 individuals. Protein-truncating variants in genes intolerant to this class of mutations increased risk of autism, schizophrenia, bipolar disorder, intellectual disability, and ADHD. In individuals without these disorders, there was an association with shorter height, lower education, increased hospitalization, and reduced age at enrollment. Gene sets implicated from GWASs did not show a significant protein-truncating variants burden beyond what was captured by established Mendelian genes. In conclusion, we provide a thorough investigation of the impact of rare deleterious coding variants on complex traits, suggesting widespread pleiotropic risk.
Asunto(s)
Mutación/genética , Sistemas de Lectura Abierta/genética , Bases de Datos Genéticas , Etnicidad/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Fenotipo , Proteínas/genéticaRESUMEN
Cytogenic testing is routinely applied in most neurological centres for severe paediatric epilepsies. However, which characteristics of copy number variants (CNVs) confer most epilepsy risk and which epilepsy subtypes carry the most CNV burden, have not been explored on a genome-wide scale. Here, we present the largest CNV investigation in epilepsy to date with 10 712 European epilepsy cases and 6746 ancestry-matched controls. Patients with genetic generalized epilepsy, lesional focal epilepsy, non-acquired focal epilepsy, and developmental and epileptic encephalopathy were included. All samples were processed with the same technology and analysis pipeline. All investigated epilepsy types, including lesional focal epilepsy patients, showed an increase in CNV burden in at least one tested category compared to controls. However, we observed striking differences in CNV burden across epilepsy types and investigated CNV categories. Genetic generalized epilepsy patients have the highest CNV burden in all categories tested, followed by developmental and epileptic encephalopathy patients. Both epilepsy types also show association for deletions covering genes intolerant for truncating variants. Genome-wide CNV breakpoint association showed not only significant loci for genetic generalized and developmental and epileptic encephalopathy patients but also for lesional focal epilepsy patients. With a 34-fold risk for developing genetic generalized epilepsy, we show for the first time that the established epilepsy-associated 15q13.3 deletion represents the strongest risk CNV for genetic generalized epilepsy across the whole genome. Using the human interactome, we examined the largest connected component of the genes overlapped by CNVs in the four epilepsy types. We observed that genetic generalized epilepsy and non-acquired focal epilepsy formed disease modules. In summary, we show that in all common epilepsy types, 1.5-3% of patients carry epilepsy-associated CNVs. The characteristics of risk CNVs vary tremendously across and within epilepsy types. Thus, we advocate genome-wide genomic testing to identify all disease-associated types of CNVs.
Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Epilepsia/genética , Predisposición Genética a la Enfermedad/genética , Femenino , Estudio de Asociación del Genoma Completo , Humanos , MasculinoRESUMEN
OBJECTIVE: Copy number variations (CNVs) represent a significant genetic risk for several neurodevelopmental disorders including epilepsy. As knowledge increases, reanalysis of existing data is essential. Reliable estimates of the contribution of CNVs to epilepsies from sizeable populations are not available. METHODS: We assembled a cohort of 1255 patients with preexisting array comparative genomic hybridization or single nucleotide polymorphism array based CNV data. All patients had "epilepsy plus," defined as epilepsy with comorbid features, including intellectual disability, psychiatric symptoms, and other neurological and nonneurological features. CNV classification was conducted using a systematic filtering workflow adapted to epilepsy. RESULTS: Of 1097 patients remaining after genetic data quality control, 120 individuals (10.9%) carried at least one autosomal CNV classified as pathogenic; 19 individuals (1.7%) carried at least one autosomal CNV classified as possibly pathogenic. Eleven patients (1%) carried more than one (possibly) pathogenic CNV. We identified CNVs covering recently reported (HNRNPU) or emerging (RORB) epilepsy genes, and further delineated the phenotype associated with mutations of these genes. Additional novel epilepsy candidate genes emerge from our study. Comparing phenotypic features of pathogenic CNV carriers to those of noncarriers of pathogenic CNVs, we show that patients with nonneurological comorbidities, especially dysmorphism, were more likely to carry pathogenic CNVs (odds ratio = 4.09, confidence interval = 2.51-6.68; P = 2.34 × 10-9 ). Meta-analysis including data from published control groups showed that the presence or absence of epilepsy did not affect the detected frequency of CNVs. SIGNIFICANCE: The use of a specifically adapted workflow enabled identification of pathogenic autosomal CNVs in 10.9% of patients with epilepsy plus, which rose to 12.7% when we also considered possibly pathogenic CNVs. Our data indicate that epilepsy with comorbid features should be considered an indication for patients to be selected for a diagnostic algorithm including CNV detection. Collaborative large-scale CNV reanalysis leads to novel declaration of pathogenicity in unexplained cases and can promote discovery of promising candidate epilepsy genes.
Asunto(s)
Epilepsia/genética , Comorbilidad , Variaciones en el Número de Copia de ADN , Epilepsia/complicaciones , Predisposición Genética a la Enfermedad , Genotipo , Humanos , FenotipoRESUMEN
BACKGROUND: Microdeletions are known to confer risk to epilepsy, particularly at genomic rearrangement 'hotspot' loci. However, microdeletion burden not overlapping these regions or within different epilepsy subtypes has not been ascertained. OBJECTIVE: To decipher the role of microdeletions outside hotspots loci and risk assessment by epilepsy subtype. METHODS: We assessed the burden, frequency and genomic content of rare, large microdeletions found in a previously published cohort of 1366 patients with genetic generalised epilepsy (GGE) in addition to two sets of additional unpublished genome-wide microdeletions found in 281 patients with rolandic epilepsy (RE) and 807 patients with adult focal epilepsy (AFE), totalling 2454 cases. Microdeletions were assessed in a combined and subtype-specific approaches against 6746 controls. RESULTS: When hotspots are considered, we detected an enrichment of microdeletions in the combined epilepsy analysis (adjusted p=1.06×10-6,OR 1.89, 95% CI 1.51 to 2.35). Epilepsy subtype-specific analyses showed that hotspot microdeletions in the GGE subgroup contribute most of the overall signal (adjusted p=9.79×10-12, OR 7.45, 95% CI 4.20-13.5). Outside hotspots , microdeletions were enriched in the GGE cohort for neurodevelopmental genes (adjusted p=9.13×10-3,OR 2.85, 95% CI 1.62-4.94). No additional signal was observed for RE and AFE. Still, gene-content analysis identified known (NRXN1, RBFOX1 and PCDH7) and novel (LOC102723362) candidate genes across epilepsy subtypes that were not deleted in controls. CONCLUSIONS: Our results show a heterogeneous effect of recurrent and non-recurrent microdeletions as part of the genetic architecture of GGE and a minor contribution in the aetiology of RE and AFE.
Asunto(s)
Deleción Cromosómica , Epilepsias Parciales/genética , Epilepsia Generalizada/genética , Epilepsia Rolándica/genética , Estudios de Casos y Controles , Estudios de Cohortes , Variaciones en el Número de Copia de ADN , Expresión Génica , Estudios de Asociación Genética , HumanosRESUMEN
To evaluate the genetics of chronic nonsuppurative otitis media (OM). We performed a genome-wide association study of 429,599 individuals included in the FinnGen study using three different case definitions: combined chronic nonsuppurative OM (7034 cases) (included serous and mucous chronic OM), mucous chronic OM (5953 cases), and secretory chronic OM (1689 cases). Individuals without otitis media were used as controls (417,745 controls). We used immunohistochemistry (IHC) of the murine middle ear to evaluate the expression of annexin A13. Four loci were significantly associated (p < 1.7 × 10-8) with nonsuppurative OM. Three out of the four association signals included missense variants in genes that may play a role in otitis media pathobiology. According to our subtype-specific analyses, one novel locus, located near ANXA13, was associated with secretory OM. Three loci (near TNFRSF13B, GAS2L2, and TBX1) were associated with mucous OM. Immunohistochemistry of murine middle ear samples revealed annexin A13 expression at the apical pole of the Eustachian tube epithelium as well as variable intensity of the secretory cells of the glandular structure in proximity to the Eustachian tube. We demonstrated that secretory and mucous OM have distinct and shared genetic associations. The association of GAS2L2 with ciliary epithelium function and the pathogenesis of dysfunctional mucosa in mucous OM is suggested. The abundant expression of annexin A13 in the Eustachian tube epithelium, along with its role in apical transport for the binding and transfer of phospholipids, indicates the role of annexin A13 and phospholipids in Eustachian tube dysfunction.
Asunto(s)
Anexinas , Estudio de Asociación del Genoma Completo , Otitis Media , Animales , Anexinas/genética , Anexinas/metabolismo , Humanos , Ratones , Otitis Media/genética , Otitis Media/metabolismo , Otitis Media/patología , Femenino , Masculino , Oído Medio/metabolismo , Oído Medio/patología , Polimorfismo de Nucleótido Simple , Predisposición Genética a la Enfermedad , Trompa Auditiva/patología , Trompa Auditiva/metabolismoRESUMEN
Varicose veins is the most common manifestation of chronic venous disease that displays female-biased incidence. To identify protein-inactivating variants that could guide identification of drug target genes for varicose veins and genetic evidence for the disease prevalence difference between the sexes, we conducted a genome-wide association study of varicose veins in Finns using the FinnGen dataset with 17,027 cases and 190,028 controls. We identified 50 associated genetic loci (P < 5.0 × 10-8) of which 29 were novel including one near ERG with female-specificity (rs2836405-G, OR[95% CI] = 1.09[1.05-1.13], P = 3.1 × 10-8). These also include two X-chromosomal (ARHGAP6 and SRPX) and two autosomal novel loci (TGFB2 and GJD3) with protein-coding lead variants enriched above 56-fold in Finns over non-Finnish non-Estonian Europeans. A low-frequency missense variant in GJD3 (p.Pro59Thr) is exclusively associated with a lower risk for varicose veins (OR = 0.62 [0.55-0.70], P = 1.0 × 10-14) in a phenome-wide scan of the FinnGen data. The absence of observed pleiotropy and its membership of the connexin gene family underlines GJD3 as a potential connexin-modulating therapeutic strategy for varicose veins. Our results provide insights into varicose veins etiopathology and highlight the power of isolated populations, including Finns, to discover genetic variants that inform therapeutic development.
Asunto(s)
Estudio de Asociación del Genoma Completo , Várices , Humanos , Femenino , Finlandia/epidemiología , Várices/epidemiología , Várices/genética , Enfermedad Crónica , Conexinas/genéticaRESUMEN
Inflammatory and infectious upper respiratory diseases (ICD-10: J30-J39), such as diseases of the sinonasal tract, pharynx and larynx, are growing health problems yet their genomic similarity is not known. We analyze genome-wide association to eight upper respiratory diseases (61,195 cases) among 260,405 FinnGen participants, meta-analyzing diseases in four groups based on an underlying genetic correlation structure. Aiming to understand which genetic loci contribute to susceptibility to upper respiratory diseases in general and its subtypes, we detect 41 independent genome-wide significant loci, distinguishing impact on sinonasal or pharyngeal diseases, or both. Fine-mapping implicated non-synonymous variants in nine genes, including three linked to immune-related diseases. Phenome-wide analysis implicated asthma and atopic dermatitis at sinonasal disease loci, and inflammatory bowel diseases and other immune-mediated disorders at pharyngeal disease loci. Upper respiratory diseases also genetically correlated with autoimmune diseases such as rheumatoid arthritis, autoimmune hypothyroidism, and psoriasis. Finally, we associated separate gene pathways in sinonasal and pharyngeal diseases that both contribute to type 2 immunological reaction. We show shared heritability among upper respiratory diseases that extends to several immune-mediated diseases with diverse mechanisms, such as type 2 high inflammation.
Asunto(s)
Asma , Enfermedades Faríngeas , Trastornos Respiratorios , Humanos , Estudio de Asociación del Genoma Completo , Predisposición Genética a la Enfermedad , Sitios Genéticos , Inflamación/genética , Asma/genética , Genómica , Enfermedades Faríngeas/genética , Polimorfismo de Nucleótido SimpleRESUMEN
Little is known about the genetic determinants of medication use in preventing cardiometabolic diseases. Using the Finnish nationwide drug purchase registry with follow-up since 1995, we performed genome-wide association analyses of longitudinal patterns of medication use in hyperlipidemia, hypertension and type 2 diabetes in up to 193,933 individuals (55% women) in the FinnGen study. In meta-analyses of up to 567,671 individuals combining FinnGen with the Estonian Biobank and the UK Biobank, we discovered 333 independent loci (P < 5 × 10-9) associated with medication use. Fine-mapping revealed 494 95% credible sets associated with the total number of medication purchases, changes in medication combinations or treatment discontinuation, including 46 credible sets in 40 loci not associated with the underlying treatment targets. The polygenic risk scores (PRS) for cardiometabolic risk factors were strongly associated with the medication-use behavior. A medication-use enhanced multitrait PRS for coronary artery disease matched the performance of a risk factor-based multitrait coronary artery disease PRS in an independent sample (UK Biobank, n = 343,676). In summary, we demonstrate medication-based strategies for identifying cardiometabolic risk loci and provide genome-wide tools for preventing cardiovascular diseases.
Asunto(s)
Enfermedades Cardiovasculares , Enfermedad de la Arteria Coronaria , Diabetes Mellitus Tipo 2 , Humanos , Femenino , Masculino , Enfermedad de la Arteria Coronaria/tratamiento farmacológico , Enfermedad de la Arteria Coronaria/epidemiología , Enfermedad de la Arteria Coronaria/genética , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/genética , Estudio de Asociación del Genoma Completo , Predisposición Genética a la Enfermedad , Factores de Riesgo , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/genéticaRESUMEN
Background: The aim was to evaluate the relative proportion of Non-steroidal anti-inflammatory drug exacerbated respiratory disease (NERD) and other comorbidities, and their impact on the burden of outpatient visits due to allergic rhinitis (AR), non-allergic rhinitis (NAR), acute rhinosinusitis (ARS), and chronic rhinosinusitis with nasal polyps (CRSwNP) and without (CRSsNP). Methods: We used hospital registry data of a random sample of 5080 rhinitis/rhinosinusitis patients diagnosed during 2005-2019. International Statistical Classification of Diseases and Related Health Problems (ICD10) diagnoses, visits, and other factors were collected from electronic health records by using information extraction and data processing methods. Cox's proportional hazards model was used for modeling the time to the next outpatient visit. Results: The mean (±standard deviation) age of the population was 33.6 (±20.7) years and 56.1% were female. The relative proportion of AR, NAR, ARS, CRSsNP and CRSwNP, were 33.5%, 27.5%, 27.2%, 20.7%, and 10.9%, respectively. The most common other comorbidities were asthma (44.4%), other chronic respiratory diseases (38.5%), musculoskeletal diseases (38.4%), and cardiovascular diseases (35.7%). Non-steroidal anti-inflammatory drug exacerbated respiratory disease existed in 3.9% of all patients, and 17.7% of the CRSwNP group. The relative proportion of subjects having 1, 2, 3 and ≥ 4 other diseases were 18.0%, 17.6%, 17.0%, 37.0%, respectively. All diseases except AR, ARS, and mouth breathing, were associated with a high frequency of outpatient visits. Conclusions: Our results revealed a high relative proportion of NERD and other comorbidities, which affect the burden of outpatient visits and hence confirm the socioeconomic impact of upper airway diseases.
RESUMEN
The contribution of de novo variants in severe intellectual disability (ID) has been extensively studied whereas the genetics of mild ID has been less characterized. To elucidate the genetics of milder ID we studied 442 ID patients enriched for mild ID (>50%) from a population isolate of Finland. Using exome sequencing, we show that rare damaging variants in known ID genes are observed significantly more often in severe (27%) than in mild ID (13%) patients. We further observe a significant enrichment of functional variants in genes not yet associated with ID (OR: 2.1). We show that a common variant polygenic risk significantly contributes to ID. The heritability explained by polygenic risk score is the highest for educational attainment (EDU) in mild ID (2.2%) but lower for more severe ID (0.6%). Finally, we identify a Finland enriched homozygote variant in the CRADD ID associated gene.
Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Variación Genética/genética , Genoma Humano/genética , Discapacidad Intelectual/epidemiología , Discapacidad Intelectual/genética , Proteína Adaptadora de Señalización CRADD/genética , Disfunción Cognitiva/epidemiología , Disfunción Cognitiva/genética , Estudios de Cohortes , Exoma , Femenino , Finlandia/epidemiología , Estudios de Asociación Genética , Enfermedades Genéticas Congénitas/epidemiología , Enfermedades Genéticas Congénitas/genética , Predisposición Genética a la Enfermedad , Geografía , Homocigoto , Humanos , Discapacidad Intelectual/diagnóstico , Masculino , Herencia Multifactorial , Mutación , Trastornos del Neurodesarrollo/epidemiología , Trastornos del Neurodesarrollo/genética , Patología Molecular , Prevalencia , Secuenciación del ExomaRESUMEN
Clonal hematopoiesis driven by somatic heterozygous TET2 loss is linked to malignant degeneration via consequent aberrant DNA methylation, and possibly to cardiovascular disease via increased cytokine and chemokine expression as reported in mice. Here, we discover a germline TET2 mutation in a lymphoma family. We observe neither unusual predisposition to atherosclerosis nor abnormal pro-inflammatory cytokine or chemokine expression. The latter finding is confirmed in cells from three additional unrelated TET2 germline mutation carriers. The TET2 defect elevates blood DNA methylation levels, especially at active enhancers and cell-type specific regulatory regions with binding sequences of master transcription factors involved in hematopoiesis. The regions display reduced methylation relative to all open chromatin regions in four DNMT3A germline mutation carriers, potentially due to TET2-mediated oxidation. Our findings provide insight into the interplay between epigenetic modulators and transcription factor activity in hematological neoplasia, but do not confirm the putative role of TET2 in atherosclerosis.
Asunto(s)
Aterosclerosis/genética , Metilación de ADN/genética , Proteínas de Unión al ADN/genética , Haploinsuficiencia , Enfermedad de Hodgkin/genética , Proteínas Proto-Oncogénicas/genética , Adulto , Aterosclerosis/patología , Células Cultivadas , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN Metiltransferasa 3A , Proteínas de Unión al ADN/metabolismo , Dioxigenasas , Epigénesis Genética , Femenino , Finlandia , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Hematopoyesis/genética , Enfermedad de Hodgkin/sangre , Enfermedad de Hodgkin/patología , Humanos , Masculino , Fenotipo , Cultivo Primario de Células , Proteínas Proto-Oncogénicas/metabolismo , ARN Interferente Pequeño/metabolismo , Secuenciación Completa del GenomaRESUMEN
OBJECTIVE: After the recent publication of the first patients with disease-associated missense variants in the GRIN2D gene, we evaluate the effect of copy number variants (CNVs) overlapping this gene toward the presentation of neurodevelopmental disorders (NDDs). METHODS: We explored ClinVar (number of CNVs = 50,794) and DECIPHER (number of CNVs = 28,085) clinical databases of genomic variations for patients with copy number changes overlapping the GRIN2D gene at the 19q13.33 locus and evaluated their respective phenotype alongside their frequency, gene content, and expression, with publicly available reference databases. RESULTS: We identified 11 patients with microduplications at the 19q13.33 locus. The majority of CNVs arose de novo, and comparable CNVs are not present in control databases. All patients were reported to have NDDs and dysmorphic features as the most common clinical phenotype (N = 8/11), followed by seizures (N = 6/11) and intellectual disability (N = 5/11). All duplications shared a consensus region of 405 kb overlapping 13 genes. After screening for duplication tolerance in control populations, positive gene brain expression, and gene dosage sensitivity analysis, we highlight 4 genes for future evaluation: CARD8, C19orf68, KDELR1, and GRIN2D, which are promising candidates for disease causality. Furthermore, investigation of the literature especially supports GRIN2D as the best candidate gene. CONCLUSIONS: Our study presents dup19q13.33 as a novel duplication syndrome locus associated with NDDs. CARD8, C19orf68, KDELR1, and GRIN2D are promising candidates for functional follow-up.
RESUMEN
Biallelic loss-of-function mutations in TYROBP and TREM2 cause a rare disease that resembles early-onset frontotemporal dementia with bone lesions called polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy (PLOSL). Some PLOSL-causing variants in TREM2 have also been associated with Alzheimer's disease when heterozygous. Here, we studied the PLOSLFINTYROBP deletion that covers 4 of the gene's 5 exons. We genotyped 3220 older Finns (mean age 79, range 58-104) and found 11 deletion carriers (mean age 78, range 60-94). The carrier prevalence was 0.0034 (1 in 293) that matches previous findings in younger cohorts suggesting no significant early mortality. By comparing Mini-Mental State Examination (MMSE) scores and diagnoses of dementia, we did not find any significant differences between TYROBP deletion carriers and noncarriers (all p-values >0.5). Neuropathological analysis of 2 deletion carriers (aged 89 and 94 years) demonstrated only minimal beta amyloid pathology (Consortium to Establish a Registry for Alzheimer's Disease (CERAD) score 0). Collectively these results suggest that heterozygous carriership of the TYROBP deletion is not a major risk factor of cognitive impairment.