RESUMEN
Steel-concrete composite systems are an efficient alternative to mid- and high-rise building structures because of their high strength-to-weight ratio when compared to traditional concrete or steel constructive systems. Nevertheless, composite structural systems are susceptible to damage due to, for example, deficient construction processes, errors in design and detailing, steel corrosion, and the drying shrinkage of concrete. As a consequence, the overall strength of the structure may be significantly decreased. In view of the relevance of this subject, the present paper addresses the damage detection problem in a steel-concrete composite structure with an impact-hammer-based modal testing procedure. The mathematical formulation adopted in this work allows for the identification of regions where stiffness varies with respect to an initial virgin state without the need for theoretical models of the undamaged structure (such as finite element models). Since mode shape curvatures change due to the loss of stiffness at the presence of cracks, a change in curvature was adopted as a criterion to quantify stiffness reduction. A stiffness variability index based on two-dimensional mode shape curvatures is generated for several points on the structure, resulting in a damage distribution pattern. Our numerical predictions were compared with experimentally measured data in a full-scale steel-concrete composite beam subjected to bending and were successfully validated. The present damage detection strategy provides further insight into the failure mechanisms of steel-concrete composite structures, and promotes the future development of safer and more reliable infrastructures.
RESUMEN
This paper represents a first attempt to study the feasibility of using shear wave (SW) ultrasonic probes as pump-wave sources in concrete microcrack detection and monitoring by Nonlinear Ultrasonic Coda Wave Interferometry (NCWI). The premise behind our study is that the nonlinear elastic hysteretic behavior at microcracks may depend on their orientation with respect to the stationary wave-field induced by the pump-wave source. In this context, the use of a SW probe as a pump-wave source may induce the nonlinear elastic behavior of microcracks oriented in directions not typically detected by a conventional longitudinal pump-wave source. To date, this premise is hard to address by current experimental and numerical methods, however, the feasibility of using SW probes as a pump-wave source can be experimentally tested. This idea is the main focus of the present work. Under laboratory conditions, we exploit the high sensitivity of the CWI technique to capture the transient weakening behaviour induced by the SW pump-wave source in concrete samples subjected to loading and unloading cycles. Our results show that after reaching a load level of 40% of the ultimate stress, the material weakening increases as a consequence of microcrack proliferation, which is consistent with previous studies. Despite the lack of exhaustive experimental studies, we believe that our work is the first step in the formulation of strategies that involve an appropriate selection and placement of pump-wave sources to improve the NCWI technique. These improvements may be relevant to convert the NCWI technique into a more suitable non-destructive testing technique for the inspection of microcracking evolution in concrete structures and the assessment of their structural integrity.
RESUMEN
Humans are the only species who generate waste materials that cannot be broken down by natural processes. The ideal solution to this waste problem would be to employ only compostable materials. Biodegradable materials play a key role in creating a safer and greener world. Biodegradability is the gift that keeps on giving, in the sense of creating an Earth worth living. The future is thus best served by green energy, sustainability, and renewable resources. To realize such goals, waste should be considered as a valuable resource. In this context, Zea mays (Zm) root fibres, which are normally considered as agricultural waste, can be used as reinforcing substances in polymer matrices to produce structural composite materials. Before being used in composites, such fibres must be analysed for their physical properties. Chemical treatments can be employed to improve the structural quality of fibres, and the changes due to such modification can be analysed. Therefore, the current work examines the effect of permanganate treatment on the surface properties of Zm fibres. The raw and potassium permanganate-treated samples were assayed for various properties. Physical analysis of the fibre samples yielded details concerning the physical aspects of the fibres. The thermal conductivity and moisture absorption behaviour of the samples were analysed. Chemical analysis was employed to characterize the composition of both treated and untreated samples. p-XRD was employed to examine the crystalline nature of the Zm fibres. Numerous functional groups present in each sample were analysed by FTIR. Thermogravimetric analysis was used to determine the thermal stability of Zm fibres. Elemental analysis (CHNS and EDS) was used to determine the elemental concentrations of both raw and treated samples. The surface alterations of Zm fibres brought on by treatment were described using SEM analysis. The characteristics of Zm roots and the changes in quality due to treatment were reviewed, and there were noticeable effects due to the treatment. Both samples would have applications in various fields, and each could be used as a potential reinforcing material in the production of efficient bio-composites.
Asunto(s)
Raíces de Plantas , Permanganato de Potasio , Zea mays , Zea mays/química , Zea mays/metabolismo , Permanganato de Potasio/química , Raíces de Plantas/química , Raíces de Plantas/metabolismo , Biodegradación Ambiental , Conductividad TérmicaRESUMEN
One crucial property of concrete, particularly in construction, is its thermal conductivity, which impacts heat transfer through conduction. For example, reducing the thermal conductivity of concrete can lead to energy savings in buildings. Various techniques exist for measuring the thermal conductivity of materials, but there is limited discussion in the literature about suitable methods for concrete. In this study, the transient line source method is employed to evaluate the thermal conductivity of concrete samples with natural and synthetic fibers after 7 and 28 days of curing. The results indicate that concrete with hemp fiber generally exhibits higher thermal conductivity values, increasing by 48% after 28 days of curing, while synthetic fibers have a minimal effect. In conclusion, this research opens the door to using natural alternatives like hemp fiber to improve concrete's thermal properties, providing alternatives for thermo-active foundations and geothermal energy piles which require high thermal conductivities.
RESUMEN
This study emphasizes the importance of utilizing biodegradable material Butea parviflora (BP) fiber for sustainable solutions. BP fiber offers numerous ecological benefits, such as being lightweight, biodegradable, and affordable to recycle. The study examines the effects of potassium permanganate (KMnO4) treatment on BP fiber and analyzes its physical and chemical behavior using various methods, including X-ray Diffraction (XRD) analysis, tensile testing, thermogravimetric analysis, thermal conductivity, Scanning Electron Microscopy (SEM), and Fourier Transform Infrared spectroscopic (FTIR) analysis. The results demonstrate that BP fiber possesses low density (1.40 g/cc) and high cellulose content (59.4%), which fosters compatibility between the matrix and resin. XRD analysis indicates a high crystallinity index (83.47%) and crystallite size (6.4 nm), showcasing exceptional crystalline behavior. Treated fibers exhibit improved tensile strength (198 MPa) and Young's modulus (4.40 GPa) compared to untreated fibers (tensile strength-92 MPa, tensile modulus-2.16 GPa). The Tg-DTA thermograms reveal the fiber's thermal resistance up to 240 °C with a kinetic activation energy between 62.80-63.46 KJ/mol. Additionally, the lowered thermal conductivity (K) from Lee's disc experiment suggests that BP fiber could be used in insulation applications. SEM photographic results display effective surface roughness for composite making, and FTIR studies reveal vibrational variations of cellulosic functional groups, which correlates with increased cellulosic behavior. Overall, the study affirms the potential of BP fiber as a reinforcing material for composite-making while emphasizing the importance of utilizing biodegradable materials for sustainability.
RESUMEN
This paper investigates the hemp limecrete mechanical and microstructural performance of a new sustainable and environmental friendly building material. Several studies have investigated the hemp limecrete focusing on the non-structural applications. The newly developed hemp limecrete consists of high mechanical and microstructural properties. The specimens were prepared with varying lengths and proportions of hemp fibers with lime and tested for compressive strength, flexural strength, thermal conductivity and microstructural analysis like SEM and EDS. The study found that the optimal fiber content for making mortars was between 2 and 4%. This conclusion was reached after analyzing the influence of fiber length and ratio on the properties of the mortars. The dry unit weight decreased when the fiber content was higher than 4%. In terms of strength, the study found that the flexural strength of the hemp limecrete improved with an increase in fiber ratio, but the compressive strength decreased. However, with 2% hemp fiber, compressive strengths of 3.48 MPa and above were obtained. The study also highlighted the good thermal insulation properties and dimensional stability of hemp limecrete. These findings have important implications for the use of hemp limecrete as a sustainable building material. The results suggest that hemp limecrete has the potential to be a viable alternative to conventional concrete in specific applications, particularly in areas where environmental sustainability is a priority.