Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
BMC Cell Biol ; 15: 24, 2014 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-24974801

RESUMEN

BACKGROUND: Chronic inflammation-mediated ß-cell apoptosis is known to decrease ß-cell mass in diabetes leading to reduced insulin secretion. Exposure to pro-inflammatory cytokines can stimulate apoptosis in pancreatic ß-cells. The G protein coupled receptor 40 (GPR40) is implicated for glucose induced insulin secretion. We hypothesized that GPR40 activation can protect ß-cells from inflammation-induced apoptosis and restore glucose stimulated insulin secretion. RESULTS: By exposing NIT1 insulinoma cells and rat islets to a cocktail of pro-inflammatory cytokines (TNFα and IL1ß), we mimicked inflammatory signaling as seen by JNK and NFκB activation and increased mRNA levels of TNFα, IL1ß and NOS2a. These changes were reversed by pharmacological activation of GPR40 by a specific, small molecule, CNX-011-67. Further, GPR40 activation reduced inflammation-mediated oxidative and endoplasmic reticulum (ER) stresses. Importantly, GPR40 activation decreased inflammation-induced apoptosis as measured by key markers. These impacts of GPR40 were mediated through activation of PLC, CaMKII, calcineurin and cAMP. Cell survival was also enhanced by GPR40 activation as seen from the increased phosphorylation of Akt/PKB and enhanced expression of BCL2 and PDX1 genes. Interestingly, GPR40 activation restored both, inflammation-mediated inhibition on insulin secretion and intracellular insulin content. CONCLUSIONS: In this study, we provide evidences that CNX-011-67, a GPR40 agonist, reduces inflammatory signaling and apoptosis in pancreatic ß-cells while promoting insulin secretion and synthesis. Activation of GPR40 leads to attenuation of ß-cell dysfunction caused by chronic inflammation and thus could be of immense clinical value to improve insulin secretion and ß-cell survival.


Asunto(s)
Antiinflamatorios/farmacología , Inflamación/tratamiento farmacológico , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/inmunología , Receptores Acoplados a Proteínas G/agonistas , Animales , Apoptosis/efectos de los fármacos , Calcineurina/inmunología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/inmunología , Línea Celular , Células Cultivadas , Enfermedad Crónica , Glucosa/inmunología , Inflamación/inmunología , Insulina/inmunología , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/inmunología , Masculino , Ratas , Ratas Wistar , Receptores Acoplados a Proteínas G/inmunología , Transducción de Señal/efectos de los fármacos
2.
BMC Cell Biol ; 14: 31, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23815372

RESUMEN

BACKGROUND: In the progression towards diabetes, glucolipotoxicity is one of the main causes of pancreatic beta cell pathology. The aim of this study was to examine the in vitro effects of chronic glucolipotoxic conditions on cellular responses in pancreatic islets, including glucose and fat metabolism, Calcium mobilization, insulin secretion and insulin content. RESULTS: Exposure of islets to chronic glucolipotoxic conditions decreased glucose stimulated insulin secretion in vitro. Reduced protein levels of Glut2/slc2a2, and decreased glucokinase and pyruvate carboxylase mRNA levels indicated a significant lowering in glucose sensing. Concomitantly, both fatty acid uptake and triglyceride accumulation increased significantly while fatty acid oxidation decreased. This general suppression in glucose metabolism correlated well with a decrease in mitochondrial number and activity, reduction in cellular ATP content and dampening of the TCA cycle. Further, we also observed a decrease in IP3 levels and lower Calcium mobilization in response to glucose. Importantly, chronic glucolipotoxic conditions in vitro decreased insulin gene expression, insulin content, insulin granule docking (to the plasma membrane) and insulin secretion. CONCLUSIONS: Our results present an integrated view of the effects of chronic glucolipotoxic conditions on known and novel signaling events, in vitro, that results in reduced glucose responsiveness and insulin secretion.


Asunto(s)
Calcio/metabolismo , Glucosa/farmacología , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Mitocondrias/metabolismo , Palmitatos/farmacología , Adenosina Trifosfato/metabolismo , Animales , Células Cultivadas , Ácidos Grasos/metabolismo , Glucoquinasa/metabolismo , Glucosa/metabolismo , Transportador de Glucosa de Tipo 2/metabolismo , Técnicas In Vitro , Secreción de Insulina , Células Secretoras de Insulina/patología , Ratones , Modelos Animales , Palmitatos/metabolismo , Piruvato Carboxilasa/metabolismo , Ratas , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Triglicéridos/metabolismo
3.
Diabetol Metab Syndr ; 6(1): 83, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25143786

RESUMEN

BACKGROUND: In addition to their role in growth, cellular differentiation and homeostasis Retinoid X Receptors (RXR) regulate multiple physiological and metabolic pathways in various organs that have beneficial glucose and lipid (cholesterol) lowering, insulin sensitizing and anti-obesity effects. Rexinoids, compounds that specifically binds and activate RXR, are therefore considered as potential therapeutics for treating metabolic syndrome. Apparently many of the rexinoids developed in the past increased triglycerides, caused hepatomegaly and also suppressed the thyroid hormone axis. The aim of this study is to evaluate CNX-013-B2, a potent and highly selective rexinoid, for its potential to treat multiple risk factors of the metabolic syndrome. METHODS: CNX-013-B2 was selected in a screening system designed to identify compounds that selectively activated only a chosen sub-set of heterodimer partners of RXR of importance to treat insulin resistance. Male C57BL/6j mice (n = 10) on high fat diet (HFD) and 16 week old ob/ob mice (n = 8) were treated orally with CNX-013-B2 (10 mg/kg twice daily) or vehicle for 10 weeks and 4 weeks respectively. Measurement of plasma glucose, triglyceride, cholesterol including LDL-C, glycerol, free fatty acids, feed intake, body weight, oral glucose tolerance and non-shivering thermogenesis were performed at selected time points. After study termination such measurements as organ weight, triglyceride content, mRNA levels, protein phosphorylation along with histological analysis were performed. RESULTS: CNX-013-B2 selectively activates PPARs- α, ß/δ and γ and modulates activity of LXR, THR and FXR. In ob/ob mice a significant reduction of 25% in fed glucose (p < 0.001 ), a 14% (p < 0.05) reduction in serum total cholesterol and 18% decrease (p < 0.01) in LDL-C and in DIO mice a reduction of 12% (p < 0.01 ) in fasting glucose, 20% in fed triglyceride (p < 0.01) and total cholesterol (p < 0.001) levels, coupled with enhanced insulin sensitivity, cold induced thermogenesis and 7% reduction in body weight were observed. CONCLUSION: CNX-013-B2 is an orally bio available selective rexinoid that can be used as a novel therapeutic agent for management of multiple risk factors of the metabolic syndrome without the risk of side effects reported to be associated with rexinoids.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda