Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Biochim Biophys Acta ; 1811(2): 84-96, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21094694

RESUMEN

Brown spider dermonecrotic toxins (phospholipases-D) are the most well-characterized biochemical constituents of Loxosceles spp. venom. Recombinant forms are capable of reproducing most cutaneous and systemic manifestations such as dermonecrotic lesions, hematological disorders, and renal failure. There is currently no direct confirmation for a relationship between dermonecrosis and inflammation induced by dermonecrotic toxins and their enzymatic activity. We modified a toxin isoform by site-directed mutagenesis to determine if phospholipase-D activity is directly related to these biological effects. The mutated toxin contains an alanine substitution for a histidine residue at position 12 (in the conserved catalytic domain of Loxosceles intermedia Recombinant Dermonecrotic Toxin - LiRecDT1). LiRecDT1H12A sphingomyelinase activity was drastically reduced, despite the fact that circular dichroism analysis demonstrated similar spectra for both toxin isoforms, confirming that the mutation did not change general secondary structures of the molecule or its stability. Antisera against whole venom and LiRecDT1 showed cross-reactivity to both recombinant toxins by ELISA and immunoblotting. Dermonecrosis was abolished by the mutation, and rabbit skin revealed a decreased inflammatory response to LiRecDT1H12A compared to LiRecDT1. Residual phospholipase activity was observed with increasing concentrations of LiRecDT1H12A by dermonecrosis and fluorometric measurement in vitro. Lipid arrays showed that the mutated toxin has an affinity for the same lipids LiRecDT1, and both toxins were detected on RAEC cell surfaces. Data from in vitro choline release and HPTLC analyses of LiRecDT1-treated purified phospholipids and RAEC membrane detergent-extracts corroborate with the morphological changes. These data suggest a phospholipase-D dependent mechanism of toxicity, which has no substrate specificity and thus utilizes a broad range of bioactive lipids.


Asunto(s)
Membrana Celular , Células Endoteliales , Inflamación/inducido químicamente , Fosfolipasa D/toxicidad , Venenos de Araña/toxicidad , Animales , Aorta/citología , Membrana Celular/química , Membrana Celular/efectos de los fármacos , Células Cultivadas , Colina/metabolismo , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Metabolismo de los Lípidos , Mutagénesis Sitio-Dirigida , Fosfolipasa D/genética , Fosfolipasa D/metabolismo , Fosfolípidos/metabolismo , Conejos , Proteínas Recombinantes/genética , Proteínas Recombinantes/toxicidad , Venenos de Araña/genética
2.
J Cell Biochem ; 107(4): 655-66, 2009 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-19455508

RESUMEN

Brown spiders have world-wide distribution and are the cause of health problems known as loxoscelism. Necrotic cutaneous lesions surrounding the bites and less intense systemic signs like renal failure, DIC, and hemolysis were observed. We studied molecular mechanism by which recombinant toxin, biochemically characterized as phospholipase-D, causes direct hemolysis (complement independent). Human erythrocytes treated with toxin showed direct hemolysis in a dose-dependent and time-dependent manner, as well as morphological changes in cell size and shape. Erythrocytes from human, rabbit, and sheep were more susceptible than those from horse. Hemolysis was not dependent on ABO group or Rhesus system. Confocal and FACS analyses using antibodies or GFP-phospholipase-D protein showed direct toxin binding to erythrocytes membrane. Moreover, toxin-treated erythrocytes reacted with annexin-V and showed alterations in their lipid raft profile. Divalent ion chelators significantly inhibited hemolysis evoked by phospholipase-D, which has magnesium at the catalytic domain. Chelators were more effective than PMSF (serine-protease inhibitor) that had no effect on hemolysis. By site-directed mutation at catalytic domain (histidine 12 by alanine), hemolysis and morphologic changes of erythrocytes (but not the toxin's ability of membrane binding) were inhibited, supporting that catalytic activity is involved in hemolysis and cellular alterations but not toxin cell binding. The results provide evidence that L. intermedia venom phospholipase-D triggers direct human blood cell hemolysis in a catalytic-dependent manner.


Asunto(s)
Eritrocitos/efectos de los fármacos , Hemólisis/efectos de los fármacos , Fosfolipasa D/farmacología , Venenos de Araña/farmacología , Animales , Catálisis , Forma de la Célula , Tamaño de la Célula , Membrana Eritrocítica/metabolismo , Eritrocitos/patología , Humanos , Conejos , Ovinos
3.
Int J Biochem Cell Biol ; 44(1): 170-7, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22051631

RESUMEN

Envenoming with brown spiders (Loxosceles genus) is common throughout the world. Cutaneous symptoms following spider bite accidents include dermonecrosis, erythema, itching and pain. In some cases, accidents can cause hypersensibility or even allergic reactions. These responses could be associated with histaminergic events, such as an increase in vascular permeability and vasodilatation. A protein that may be related to the effects of spider venom was identified from a previously obtained cDNA library of the L. intermedia venom gland. The amino acid sequence of this protein is homologous to proteins from the TCTP (translationally-controlled tumor protein) family, which are extracellular histamine-releasing factors (HRF) that are associated with the allergic reactions to parasites. Herein, we described the cloning, heterologous expression, purification and functional characterization of a novel member of the TCTP family from the Loxosceles intermedia venom gland. This recombinant protein, named LiRecTCTP, causes edema, enhances vascular permeability and is likely related to the inflammatory activity of the venom. Moreover, LiRecTCTP presents an immunological relationship with mammalian TCTPs.


Asunto(s)
Biomarcadores de Tumor/genética , Venenos de Araña/genética , Arañas/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Biomarcadores de Tumor/biosíntesis , Biomarcadores de Tumor/química , Biomarcadores de Tumor/inmunología , Permeabilidad Capilar/efectos de los fármacos , Clonación Molecular , Reacciones Cruzadas , Edema/etiología , Ratones , Datos de Secuencia Molecular , Conejos , Venenos de Araña/biosíntesis , Venenos de Araña/química , Venenos de Araña/inmunología , Arañas/genética , Proteína Tumoral Controlada Traslacionalmente 1
4.
PLoS One ; 7(11): e48505, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23133637

RESUMEN

The shortage of petroleum reserves and the increase in CO(2) emissions have raised global concerns and highlighted the importance of adopting sustainable energy sources. Second-generation ethanol made from lignocellulosic materials is considered to be one of the most promising fuels for vehicles. The giant snail Achatina fulica is an agricultural pest whose biotechnological potential has been largely untested. Here, the composition of the microbial population within the crop of this invasive land snail, as well as key genes involved in various biochemical pathways, have been explored for the first time. In a high-throughput approach, 318 Mbp of 454-Titanium shotgun metagenomic sequencing data were obtained. The predominant bacterial phylum found was Proteobacteria, followed by Bacteroidetes and Firmicutes. Viruses, Fungi, and Archaea were present to lesser extents. The functional analysis reveals a variety of microbial genes that could assist the host in the degradation of recalcitrant lignocellulose, detoxification of xenobiotics, and synthesis of essential amino acids and vitamins, contributing to the adaptability and wide-ranging diet of this snail. More than 2,700 genes encoding glycoside hydrolase (GH) domains and carbohydrate-binding modules were detected. When we compared GH profiles, we found an abundance of sequences coding for oligosaccharide-degrading enzymes (36%), very similar to those from wallabies and giant pandas, as well as many novel cellulase and hemicellulase coding sequences, which points to this model as a remarkable potential source of enzymes for the biofuel industry. Furthermore, this work is a major step toward the understanding of the unique genetic profile of the land snail holobiont.


Asunto(s)
Metagenómica , Animales , Biocombustibles , Biomasa , Biotecnología/métodos , Carbohidratos/química , Dióxido de Carbono/química , Biología Computacional/métodos , Etanol/química , Glicósido Hidrolasas/química , Lignina/química , Metagenoma , Oligosacáridos/química , Petróleo/metabolismo , Filogenia , Unión Proteica , Análisis de Secuencia de ADN/métodos , Caracoles
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda