Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 275
Filtrar
1.
Purinergic Signal ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958821

RESUMEN

Ectonucleotidase inhibitors are a family of pharmacological drugs that, by selectively targeting ectonucleotidases, are essential in altering purinergic signaling pathways. The hydrolysis of extracellular nucleotides and nucleosides is carried out by these enzymes, which include ectonucleoside triphosphate diphosphohydrolases (NTPDases) and ecto-5'-nucleotidase (CD73). Ectonucleotidase inhibitors can prevent the conversion of ATP and ADP into adenosine by blocking these enzymes and reduce extracellular adenosine. These molecules are essential for purinergic signaling, which is associated with a variability of physiological and pathological processes. By modifying extracellular nucleotide metabolism and improving purinergic signaling regulation, ectonucleotide pyrophosphatase/phosphodiesterase (ENPP) inhibitors have the potential to improve cancer treatment, inflammatory management, and immune response modulation. Purinergic signaling is affected by CD73 inhibitors because they prevent AMP from being converted to adenosine. These inhibitors are useful in cancer therapy and immunotherapy because they may improve chemotherapy effectiveness and alter immune responses. Purinergic signaling is controlled by NTPDase inhibitors, which specifically target enzymes involved in extracellular nucleotide breakdown. These inhibitors show promise in reducing immunological responses, thrombosis, and inflammation, perhaps assisting in the treatment of cardiovascular and autoimmune illnesses. Alkaline phosphatase (ALP) inhibitors alter the function of enzymes involved in dephosphorylation reactions, which has an impact on a variety of biological processes. By altering the body's phosphate levels, these inhibitors may be used to treat diseases including hyperphosphatemia and certain bone problems. This article provides a guide for researchers and clinicians looking to leverage the remedial capability of ectonucleotidase inhibitors in a variety of illness scenarios by illuminating their processes, advantages, and difficulties.

2.
Chem Biodivers ; 21(5): e202400085, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38329156

RESUMEN

A lesser-known bee product called drone brood homogenate (DBH, apilarnil) has recently attracted scientific interest for its chemical and biological properties. It contains pharmacologically active compounds that may have neuroprotective, antioxidant, fertility-enhancing, and antiviral effects. Unlike other bee products, the chemical composition of bee drone larva is poorly studied. This study analyzed the chemical compostion of apilarnil using several methods. These included liquid chromatography-mass spectrometry (LC-MS/MS) and a combination of gas chromatography/mass spectrometry with solid phase micro-extraction (SPME/GC-MS). Additionally, antioxidant activity of the apilarnil was assessed using 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. A chemical assessment of apilarnil showed that it has 6.3±0.00, 74.67±0.10 %, 3.65±0.32 %, 8.80±1.01 %, 13.16±0.94 %, and 8.79±0.49 % of pH, moisture, total lipids, proteins, flavonoids, and carbohydrates, respectively. LC-MS/MS analysis and molecular networking (GNPS) of apilarnil exhibited 44 compounds, including fatty acids, flavonoids, glycerophospholipids, alcohols, sugars, amino acids, and steroids. GC-MS detected 30 volatile compounds in apilarnil, mainly esters (24 %), ketones (23.84 %), ethers (15.05 %), alcohols (11.41 %), fatty acids (10.06), aldehydes (6.73 %), amines (5.46), and alkene (5.53 %). The antioxidant activity of apilarnil was measured using DPPH with an IC50 of 179.93±2.46 µg/ml.


Asunto(s)
Antioxidantes , Compuestos de Bifenilo , Abejas , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Animales , Compuestos de Bifenilo/antagonistas & inhibidores , Cromatografía de Gases y Espectrometría de Masas , Picratos/antagonistas & inhibidores , Espectrometría de Masas en Tándem , Cromatografía Liquida , Microextracción en Fase Sólida
3.
Bioorg Chem ; 131: 106302, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36528921

RESUMEN

The current studies mainly demonstrate the coumarin based azomethine-clubbed thiazoles synthesis and their in-vitro evaluation for the first time against α-glucosidase. Due to the catalytic role of α-glucosidase, it has become a precise target for the treatment of type diabetes mellitus (T2DM). The high rate of prevalence of diabetes and its associated health related problems led us to scrutinize the anti-diabetic capability of the synthesized thiazole derivatives (6a-6k). The anticipated structures of prepared compounds were confirmed through FT-IR and NMR spectroscopic methods. All the compounds showed several times potent activity than the standard drug, acarbose (IC50 = 873.34 ± 1.67 µM) against α-glucosidase with IC50 values in range of 0.87 ± 0.02-322.61 ± 1.14 µM. The compound 6k displayed the highest anti-diabetic activity (IC50 = 1.88 ± 0.03 µM). Kinetic study revealed that these are competitive inhibitors for α-glucosidase. The mode of binding of the synthesized molecules were further evaluated by molecular docking, which reflects the importance of azomethine group in protein-ligand interaction. The docking scores are complementary with the IC50 values of compounds while the interaction pattern of the compounds clearly demonstrates their structure-activity relationship. Current study reported medicinal importance of thiazole derivative as future drug candidates for the management of Type 2 Diabetes Mellitus (T2DM).


Asunto(s)
Diabetes Mellitus Tipo 2 , Inhibidores de Glicósido Hidrolasas , Humanos , Inhibidores de Glicósido Hidrolasas/química , Simulación del Acoplamiento Molecular , Estructura Molecular , Diabetes Mellitus Tipo 2/tratamiento farmacológico , alfa-Glucosidasas/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , Relación Estructura-Actividad , Cinética , Tiazoles/química
4.
J Enzyme Inhib Med Chem ; 38(1): 2163394, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36629454

RESUMEN

Deposition of hydroxyapatite (HA) or alkaline phosphate crystals on soft tissues causes the pathological calcification diseases comprising of end-stage osteoarthritis (OA), ankylosing spondylitis (AS), medial artery calcification and tumour calcification. The pathological calcification is symbolised by increased concentration of tissue non-specific alkaline phosphatase (TNAP). An efficient therapeutic strategy to eradicate these diseases is required, and for this the alkaline phosphatase inhibitors can play a potential role. In this context a series of novel quinolinyl iminothiazolines was synthesised and evaluated for alkaline phosphatase inhibition potential. All the compounds were subjected to DFT studies where N-benzamide quinolinyl iminothiazoline (6g), N-dichlorobenzamide quinolinyl iminothiazoline (6i) and N-nitrobenzamide quinolinyl iminothiazoline (6j) were found as the most reactive compounds. Then during the in-vitro testing, the compound N-benzamide quinolinyl iminothiazoline (6g) exhibited the maximum alkaline phosphatase inhibitory effect (IC50 = 0.337 ± 0.015 µM) as compared to other analogues and standard KH2PO4 (IC50 = 5.245 ± 0.477 µM). The results were supported by the molecular docking studies, molecular dynamics simulations and kinetic analysis which also revealed the inhibitory potential of compound N-benzamide quinolinyl iminothiazoline (6g) against alkaline phosphatase. This compound can be act as lead molecule for the synthesis of more effective inhibitors and can be suggested to test at the molecular level.


Asunto(s)
Fosfatasa Alcalina , Inhibidores Enzimáticos , Simulación del Acoplamiento Molecular , Cinética , Fosfatasa Alcalina/metabolismo , Inhibidores Enzimáticos/química , Benzamidas/farmacología
5.
Arch Pharm (Weinheim) ; 356(1): e2200356, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36220614

RESUMEN

A series of xanthene-based thiazoles was synthesized and characterized by different scpectroscopic methods, i.e. Proton nuclear magnetic resonance (1 H NMR), carbon nuclear magnetic resonance (13 C NMR), infrared spectroscopy, carbon hydrogen nitrogen analysis, and X-ray crystallography. The inhibition potencies of 18 newly synthesized thiazole derivatives were investigated on the activities of acetylcholinesterase (AChE), butyrylcholinesterase (BChE), α-amylase (α-Amy), and α-glycosidase (α-Gly) enzymes in accordance with their antidiabetic and anticholinesterase ability. The synthesized compounds have the highest inhibition potential against the enzymes at low nanomolar concentrations. Among the 18 newly synthesized molecules, 3b and 3p were superior to the known commercial inhibitors of the enzymes and have a much more effective inhibitory potential, with IC50 : 2.37 and 1.07 nM for AChE, 0.98 and 0.59 nM for BChE, 56.47 and 61.34 nM for α-Gly, and 152.48 and 124.84 nM for α-Amy, respectively. Finally, the optimized 18 compounds were subjected to molecular docking to describe the interaction between thiazole derivatives and AChE, BChE, α-Amy, and α-Gly enzymes in which important interactions were monitored with amino acid residues of each target enzyme.


Asunto(s)
Acetilcolinesterasa , Butirilcolinesterasa , Butirilcolinesterasa/metabolismo , Acetilcolinesterasa/metabolismo , Hipoglucemiantes/farmacología , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Tiazoles , Inhibidores de la Colinesterasa/química , Glicósido Hidrolasas/metabolismo
6.
Molecules ; 28(15)2023 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-37570735

RESUMEN

Ferrocenyl-based compounds have many applications in diverse scientific disciplines, including in polymer chemistry as redox dynamic polymers and dendrimers, in materials science as bioreceptors, and in pharmacology, biochemistry, electrochemistry, and nonlinear optics. Considering the horizon of ferrocene chemistry, we attempted to condense the neoteric advancements in the synthesis and applications of ferrocene derivatives reported in the literature from 2016 to date. This paper presents data on the progression of the synthesis of diverse classes of organic compounds having ferrocene scaffolds and recent developments in applications of ferrocene-based organometallic compounds, with a special focus on their biological, medicinal, bio-sensing, chemosensing, asymmetric catalysis, material, and industrial applications.

7.
Molecules ; 28(10)2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37241836

RESUMEN

The tropylium ion is a non-benzenoid aromatic species that works as a catalyst. This chemical entity brings about a large number of organic transformations, such as hydroboration reactions, ring contraction, the trapping of enolates, oxidative functionalization, metathesis, insertion, acetalization, and trans-acetalization reactions. The tropylium ion also functions as a coupling reagent in synthetic reactions. This cation's versatility can be seen in its role in the synthesis of macrocyclic compounds and cage structures. Bearing a charge, the tropylium ion is more prone to nucleophilic/electrophilic reactions than neutral benzenoid equivalents. This ability enables it to assist in a variety of chemical reactions. The primary purpose of using tropylium ions in organic reactions is to replace transition metals in catalysis chemistry. It outperforms transition-metal catalysts in terms of its yield, moderate conditions, non-toxic byproducts, functional group tolerance, selectivity, and ease of handling. Furthermore, the tropylium ion is simple to synthesize in the laboratory. The current review incorporates the literature reported from 1950 to 2021; however, the last two decades have witnessed a phenomenal upsurge in the utilization of the tropylium ion in the facilitation of organic conversions. The importance of the tropylium ion as an environmentally safe catalyst in synthesis and a comprehensive summary of some important reactions catalyzed via tropylium cations are described.

8.
Molecules ; 28(6)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36985680

RESUMEN

Bis-acyl-thiourea derivatives, namely N,N'-(((4-nitro-1,2-phenylene)bis(azanediyl)) bis(carbonothioyl))bis(2,4-dichlorobenzamide) (UP-1), N,N'-(((4-nitro-1,2-phenylene) bis(azanediyl))bis(carbonothioyl))diheptanamide (UP-2), and N,N'-(((4-nitro-1,2-phenylene)bis(azanediyl))bis(carbonothioyl))dibutannamide (UP-3), were synthesized in two steps. The structural characterization of the derivatives was carried out by FTIR, 1H-NMR, and 13C-NMR, and then their DNA binding, anti-urease, and anticancer activities were explored. Both theoretical and experimental results, as obtained by density functional theory, molecular docking, UV-visible spectroscopy, fluorescence (Flu-)spectroscopy, cyclic voltammetry (CV), and viscometry, pointed towards compounds' interactions with DNA. However, the values of binding constant (Kb), binding site size (n), and negative Gibbs free energy change (ΔG) (as evaluated by docking, UV-vis, Flu-, and CV) indicated that all the derivatives exhibited binding interactions with the DNA in the order UP-3 > UP-2 > UP-1. The experimental findings from spectral and electrochemical analysis complemented each other and supported the theoretical analysis. The lower diffusion coefficient (Do) values, as obtained from CV responses of each compound after DNA addition at various scan rates, further confirmed the formation of a bulky compound-DNA complex that caused slow diffusion. The mixed binding mode of interaction as seen in docking was further verified by changes in DNA viscosity with varying compound concentrations. All compounds showed strong anti-urease activity, whereas UP-1 was found to have comparatively better inhibitory efficiency, with an IC50 value of 1.55 ± 0.0288 µM. The dose-dependent cytotoxicity of the synthesized derivatives against glioblastoma MG-U87 cells (a human brain cancer cell line) followed by HEK-293 cells (a normal human embryonic kidney cell line) indicated that UP-1 and UP-3 have greater cytotoxicity against both cancerous and healthy cell lines at 400 µM. However, dose-dependent responses of UP-2 showed cytotoxicity against cancerous cells, while it showed no cytotoxicity on the healthy cell line at a low concentration range of 40-120 µM.


Asunto(s)
Neoplasias Encefálicas , Ureasa , Humanos , Simulación del Acoplamiento Molecular , Células HEK293 , Antibacterianos/farmacología , ADN/química , Tiourea/química , Relación Estructura-Actividad , Inhibidores Enzimáticos/farmacología
9.
Med Chem Res ; 32(6): 1077-1086, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37305207

RESUMEN

Naphthalene ring is present in a number of FDA-approved, commercially available medications, including naphyrone, terbinafine, propranolol, naproxen, duloxetine, lasofoxetine, and bedaquiline. By reacting newly obtained 1-naphthoyl isothiocyanate with properly modified anilines, a library of ten novel naphthalene-thiourea conjugates (5a-5j) were produced with good to exceptional yields and high purity. The newly synthesized compounds were observed for their potential to inhibit alkaline phosphatase (ALP) and scavenge free radicals. All of the investigated compounds displayed a more powerful inhibitory profile than the reference agent, KH2PO4 particularly compound 5h and 5a exhibited strong inhibitory potential against ALP with IC50 value of 0.365 ± 0.011 and 0.436 ± 0.057 µM respectively. In addition, Lineweaver-Burk plots revealed the non-competitive inhibition mode of the most powerful derivative i.e., 5h (ki value 0.5 µM). To investigate the putative binding mode of selective inhibitor interactions, molecular docking was performed. It is recommended that future research will focus on developing selective alkaline phosphatase inhibitors by modifying the structure of the 5h derivative.

10.
J Fluoresc ; 32(2): 799-815, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35091912

RESUMEN

Ruthenium-based metal complex dyes have been employed extensively in dye-sensitized solar cells (DSSCs) as photosensitizers, but the cost and toxicity of metal complexes have promoted the development of metal-free organic dyes. The present investigation deals with the synthesis of hemicyanine and Dicyanoisophorone (DCI) based dyes adopting the D-π-A strategy, and their application on sensitization of nano-crystalline ZnO electrodes by appending the carboxyl (COOH) anchoring group as a pendant on the primary skeleton of dyes. Dyes have been characterized by UV, FTIR, and NMR spectroscopic studies. Absorption maxima (λmax) were found in the region 416-551 nm while emission wavelength (λem) was observed in the range 575-685 nm. Cyclic voltammetry and DFT calculations were used to estimate redox potential and band gap energies of dyes.

11.
Mol Divers ; 26(6): 3241-3254, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35083622

RESUMEN

Thiazole derivatives are known inhibitors of alkaline phosphatase, but various side effects have reduced their curative efficacy. Conversely, compounds bearing azomethine linkage display a broad spectrum of biological applications. Therefore, combining the two scaffolds in a single structural unit should result in joint beneficial effects of both. A new series of azomethine-clubbed thiazoles (3a-i) was synthesized and appraised for their inhibitory potential against human tissue non-specific alkaline phosphatase (h-TNAP) and human intestinal alkaline phosphatase (h-IAP). Compounds 3c and 3f were found to be most potent compounds toward h-TNAP with IC50 values of 0.15 ± 0.01 and 0.50 ± 0.01 µM, respectively, whereas 3a and 3f exhibited maximum potency for h-IAP with IC50 value of 2.59 ± 0.04 and 2.56 ± 0.02 µM, respectively. Molecular docking studies were also performed to find the type of binding interaction between potential inhibitor and active sites of enzymes. The enzymes inhibition kinetics studies were carried out to define the mechanism of enzyme inhibition. The current study leads to discovery of some potent inhibitors of alkaline phosphatase that is promising toward identification of compounds with druggable properties.


Asunto(s)
Fosfatasa Alcalina , Inhibidores Enzimáticos , Tiazoles , Humanos , Fosfatasa Alcalina/antagonistas & inhibidores , Fosfatasa Alcalina/química , Inhibidores Enzimáticos/farmacología , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Tiazoles/farmacología
12.
Drug Dev Res ; 83(3): 745-754, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34897776

RESUMEN

A series of N-((4-sulfamoylphenyl)carbamothioyl)alkanamides (5a-j) were synthesized by the reaction of sulphanilamide in dry acetone with freshly prepared alkyl and acyl isothiocyanates (5a-j). The structures of products were confirmed by IR, 1 H, and 13 C NMR. The synthesized compounds were screened as inhibitors of the bovine erythrocyte carbonic anhydrase isoform II (bCA II) and 15-lipoxygenase enzyme (15-LOX). Most of the derivatives showed significant activity against bCA-II while only few compounds were found active against 15-LOX. Molecular docking studies of most active compounds were carried out against bCA II as well as 15-LOX to rationalize the binding mode and interactions of compound in the active sites. Additionally, the pharmacokinetic properties of the compounds were predicted through computational tools, which reflect that these compounds possess acceptable pharmacokinetic profile and good drug-likeness.


Asunto(s)
Anhidrasa Carbónica II , Inhibidores de la Lipooxigenasa , Animales , Inhibidores de Anhidrasa Carbónica/farmacología , Dominio Catalítico , Bovinos , Inhibidores de la Lipooxigenasa/farmacología , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad
13.
Int J Mol Sci ; 23(19)2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36232944

RESUMEN

Urease is an amidohydrolase enzyme that is responsible for fatal morbidities in the human body, such as catheter encrustation, encephalopathy, peptic ulcers, hepatic coma, kidney stone formation, and many others. In recent years, scientists have devoted considerable efforts to the quest for efficient urease inhibitors. In the pharmaceutical chemistry, the thiourea skeleton plays a vital role. Thus, the present work focused on the development and discovery of novel urease inhibitors and reported the synthesis of a set of 1-aroyl-3-[3-chloro-2-methylphenyl] thiourea hybrids with aliphatic and aromatic side chains 4a-j. The compounds were characterized by different analytical techniques including FT-IR, 1H-NMR, and 13C-NMR, and were evaluated for in-vitro enzyme inhibitory activity against jack bean urease (JBU), where they were found to be potent anti-urease inhibitors and the inhibitory activity IC50 was found in the range of 0.0019 ± 0.0011 to 0.0532 ± 0.9951 µM as compared to the standard thiourea (IC50 = 4.7455 ± 0.0545 µM). Other studies included density functional theory (DFT), antioxidant radical scavenging assay, physicochemical properties (ADMET properties), molecular docking and molecular dynamics simulations. All compounds were found to be more active than the standard, with compound 4i exhibiting the greatest JBU enzyme inhibition (IC50 value of 0.0019 ± 0.0011 µM). The kinetics of enzyme inhibition revealed that compound 4i exhibited non-competitive inhibition with a Ki value of 0.0003 µM. The correlation between DFT experiments with a modest HOMO-LUMO energy gap and biological data was optimal. These recently identified urease enzyme inhibitors may serve as a starting point for future research and development.


Asunto(s)
Antioxidantes , Tiourea , Antioxidantes/farmacología , Canavalia/metabolismo , Inhibidores Enzimáticos/química , Simulación del Acoplamiento Molecular , Espectroscopía Infrarroja por Transformada de Fourier , Relación Estructura-Actividad , Tiourea/química , Tiourea/farmacología , Ureasa/metabolismo
14.
Int J Mol Sci ; 23(21)2022 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-36361953

RESUMEN

The acetophenone-based 3,4-dihydropyrimidine-2(1H)-thione was synthesized by the reaction of 4-methylpent-3-en-2-one (1), 4-acetyl aniline (2) and potassium thiocyanate. The spectroscopic analysis including: FTIR, 1H-NMR, and single crystal analysis proved the structure of synthesized compound (4), with the six-membered nonplanar ring in envelope conformation. In crystal structure, the intermolecular N-H ⋯ S and C-H ⋯ O hydrogen bonds link the molecule in a two-dimensional manner which is parallel to (010) the plane enclosing R22 (8) and R22 (10) ring motifs. After that, the Hirshfeld surfaces and their related two-dimensional fingerprint plots were used for thorough investigation of intermolecular interactions. According to Hirshfeld surface analysis, the most substantial contributions to the crystal packing are from H ⋯ H (59.5%), H ⋯ S/S ⋯ H (16.1%), and H ⋯ C/C ⋯ H (13.1%) interactions. The electronic properties and stability of the compound were investigated through density functional theory (DFT) studies using B3LYP functional and 6-31G* as a basis set. The compound 4 displayed the high chemical reactivity with chemical softness of 2.48. In comparison to the already reported known tyrosinase inhibitor, the newly synthesized derivatives exhibited almost seven-fold better inhibition of tyrosinase (IC50 = 1.97 µM), which was further supported by molecular docking studies. The compound 4 inside the active pocket of ribonucleotide reductase (RNR) exhibited a binding energy of -19.68 kJ/mol, and with mammalian deoxy ribonucleic acid (DNA) it acts as an effective DNA groove binder with a binding energy of -21.32 kJ/mol. The results suggested further exploration of this compound at molecular level to synthesize more potential leads for the treatment of cancer.


Asunto(s)
Monofenol Monooxigenasa , Ribonucleótido Reductasas , Tionas/farmacología , Simulación del Acoplamiento Molecular , Acetofenonas/farmacología , ADN
15.
Molecules ; 27(24)2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36557863

RESUMEN

A series of hydrazine-1-carbothioamides derivatives (3a-3j) were synthesized and analyzed for inhibitory potential towards bovine carbonic anhydrase II (b-CA II) and 15-lipoxygenase (15-LOX). Interestingly, four derivatives, 3b, 3d, 3g, and 3j, were found to be selective inhibitors of CA II, while other derivatives exhibited CA II and 15-LOX inhibition. In silico studies of the most potent inhibitors of both b-CA II and 15-LOX were carried out to find the possible binding mode of compounds in their active site. Furthermore, MD simulation results confirmed that these ligands are stably bound to the two targets, while the binding energy further confirmed the inhibitory effects of the 3h compound. As these compounds may have a role in particular diseases, the reported compounds are of great relevance for future applications in the field of medicinal chemistry.


Asunto(s)
Anhidrasa Carbónica II , Simulación de Dinámica Molecular , Animales , Bovinos , Anhidrasa Carbónica II/química , Inhibidores de la Lipooxigenasa/farmacología , Inhibidores de Anhidrasa Carbónica/química , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Estructura Molecular , Anhidrasa Carbónica IX/metabolismo
16.
Molecules ; 27(2)2022 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-35056668

RESUMEN

Imidazolidine and thiazolidine-based isatin derivatives (IST-01-04) were synthesized, characterized, and tested for their interactions with ds-DNA. Theoretical and experimental findings showed good compatibility and indicated compound-DNA binding by mixed mode of interactions. The evaluated binding parameters, i.e., binding constant (Kb), free energy change (ΔG), and binding site sizes (n), inferred comparatively greater and more spontaneous binding interactions of IST-02 and then IST-04 with the DNA, among all compounds tested under physiological pH and temperature (7.4, 37 °C). The cytotoxic activity of all compounds was assessed against HeLa (cervical carcinoma), MCF-7 (breast carcinoma), and HuH-7 (liver carcinoma), as well as normal HEK-293 (human embryonic kidney) cell lines. Among all compounds, IST-02 and 04 were found to be cytotoxic against HuH-7 cell lines with percentage cell toxicity of 75% and 66%, respectively, at 500 ng/µL dosage. Moreover, HEK-293 cells exhibit tolerance to the increasing drug concentration, suggesting these two compounds are less cytotoxic against normal cell lines compared to cancer cell lines. Hence, both DNA binding and cytotoxicity studies proved imidazolidine (IST-02) and thiazolidine (IST-04)-based isatin derivatives as potent anticancer drug candidates among which imidazolidine (IST-02) is comparatively the more promising.


Asunto(s)
Antineoplásicos/farmacología , ADN/metabolismo , Imidazolidinas/química , Isatina/farmacología , Neoplasias/tratamiento farmacológico , Tiazolidinas/química , Antineoplásicos/química , Proliferación Celular , Células HeLa , Humanos , Isatina/química , Células MCF-7 , Estructura Molecular , Neoplasias/patología , Relación Estructura-Actividad
17.
Molecules ; 27(19)2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36235300

RESUMEN

The current study focused on the laboratory approach in conjunction with computational methods for the synthesis and bioactivity assessment of unique 2-tetradecanoylimino-3-aryl-4-methyl-1,3-thiazolines (2a-2k). Processes included cyclizing 1-aroyl-3-arylthioureas with propan-2-one in the presence of trimethylamine and bromine. By using spectroscopic techniques and elemental analyses, structures were elucidated. To assess the electronic properties, density functional theory (DFT) calculations were made, while binding interactions of synthesized derivatives were studied by the molecular docking tool. Promising results were found during the evaluation of bioactivity of synthesized compounds against alkaline phosphatase. The drug likeliness score, an indicator used for any chemical entity posing as a drug, was within acceptable limits. The data suggested that most of the derivatives were potent inhibitors of alkaline phosphatase, which in turn may act as lead molecules to synthesize derivatives having desired pharmacological profiles for the treatment of specific diseases associated with abnormal levels of ALPs.


Asunto(s)
Fosfatasa Alcalina , Bromo , Fosfatasa Alcalina/metabolismo , Inhibidores Enzimáticos/química , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad
18.
Molecules ; 27(19)2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36235123

RESUMEN

Cardiotonic steroids (CTS) were first documented by ancient Egyptians more than 3000 years ago. Cardiotonic steroids are a group of steroid hormones that circulate in the blood of amphibians and toads and can also be extracted from natural products such as plants, herbs, and marines. It is well known that cardiotonic steroids reveal effects against congestive heart failure and atrial fibrillation; therefore, the term "cardiotonic" has been coined. Cardiotonic steroids are divided into two distinct groups: cardenolides (plant-derived) and bufadienolides (mainly of animal origin). Cardenolides have an unsaturated five-membered lactone ring attached to the steroid nucleus at position 17; bufadienolides have a doubly unsaturated six-membered lactone ring. Cancer is a leading cause of mortality in humans all over the world. In 2040, the global cancer load is expected to be 28.4 million cases, which would be a 47% increase from 2020. Moreover, viruses and inflammations also have a very nebative impact on human health and lead to mortality. In the current review, we focus on the chemistry, antiviral and anti-cancer activities of cardiotonic steroids from the naturally derived (toads) venom to combat these chronic devastating health problems. The databases of different research engines (Google Scholar, PubMed, Science Direct, and Sci-Finder) were screened using different combinations of the following terms: "cardiotonic steroids", "anti-inflammatory", "antiviral", "anticancer", "toad venom", "bufadienolides", and "poison chemical composition". Various cardiotonic steroids were isolated from diverse toad species and exhibited superior anti-inflammatory, anticancer, and antiviral activities in in vivo and in vitro models such as marinobufagenin, gammabufotalin, resibufogenin, and bufalin. These steroids are especially difficult to identify. However, several compounds and their bioactivities were identified by using different molecular and biotechnological techniques. Biotechnology is a new tool to fully or partially generate upscaled quantities of natural products, which are otherwise only available at trace amounts in organisms.


Asunto(s)
Productos Biológicos , Bufanólidos , Glicósidos Cardíacos , Venenos , Animales , Antivirales , Bufanólidos/química , Bufonidae , Cardenólidos/química , Glicósidos Cardíacos/farmacología , Hormonas , Humanos , Lactonas
19.
Bioorg Chem ; 116: 105378, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34601296

RESUMEN

G-protein-coupled receptors for extracellular nucleotides are known as P2Y receptors and are made up of eight members that are encoded by distinct genes and can be classified into two classes based on their affinity for specific G-proteins. P2Y receptor modulators have been studied extensively, but only a few small-molecule P2Y receptor antagonists have been discovered so far and approved by drug agencies. Derivatives of indole carboxamide have been identified as P2Y12 and P2X7 antagonist, as a result, we developed and tested a series of indole derivatives4a-lhaving thiourea moiety as P2Y receptor antagonist by using a fluorescence-based assay to measure the inhibition of intracellular calcium release in 1321N1 astrocytoma cells that had been stably transfected with the P2Y1, P2Y2, P2Y4 and P2Y6 receptors. Most of the compounds exhibited moderate to excellent inhibition activity against P2Y1 receptor subtype. The series most potent compound, 4h exhibited an IC50 value of 0.36 ± 0.01 µM selectivity against other subtypes of P2Y receptor. To investigate the ligand-receptor interactions, the molecular docking studies were carried out. Compound 4h is the most potent P2Y1 receptor antagonist due to interaction with an important amino acid residue Pro105, in addition to Ile108, Phe119, and Leu102.


Asunto(s)
Indometacina/farmacología , Antagonistas Purinérgicos/farmacología , Receptores Purinérgicos/metabolismo , Tiourea/farmacología , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Humanos , Indometacina/síntesis química , Indometacina/química , Estructura Molecular , Antagonistas Purinérgicos/síntesis química , Antagonistas Purinérgicos/química , Relación Estructura-Actividad , Tiourea/química
20.
Bioorg Chem ; 115: 105240, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34416508

RESUMEN

Quinoline derivatives have interesting biological profile. In continuation for the comprehensive evaluations of substituted quinoline derivatives against human nucleoside triphosphate diphosphohydrolases (h-NTPDases) a series of substituted quinoline derivatives (2a-g, 3a-f, 4, 5a-c, 6) was synthesized. The inhibitory activities of the synthesized compounds were evaluated against four isoenzymes of human nucleoside triphosphate diphosphohydrolases (h-NTPDases). These quinoline derivatives had IC50 (µM) values in the range of 0.20-1.75, 0.77-2.20, 0.36-5.50 and 0.90-1.82 for NTPDase1, NTPDase2, NTPDase3 and NTPDase8, respectively. The derivative 3f was the most active compound against NTPDase1 (IC50, 0.20 ± 0.02 µM) that also possessed selectivity towards NTPDase1. Similarly, derivative 3b (IC50, 0.77 ± 0.06), 2h (IC50, 0.36 ± 0.01) and 2c (IC50, 0.90 ± 0.08) displayed excellent activity corresponding to NTPDase2, NTPDase3 and NTPdase8. The compound 5c emerged as a selective inhibitor of NTPDase8. The most active compounds were then investigated to determine their mode of inhibition and finally binding interactions of the active compounds were analyzed through molecular docking studies. The obtained results strongly support the quinoline scaffold's potential as potent and selective NTPDase inhibitor.


Asunto(s)
Adenosina Trifosfatasas/antagonistas & inhibidores , Apirasa/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Quinolinas/farmacología , Adenosina Trifosfatasas/metabolismo , Apirasa/metabolismo , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Estructura Molecular , Quinolinas/síntesis química , Quinolinas/química , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda