Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Brain ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38884572

RESUMEN

Alpha-tubulin 4A encoding gene (TUBA4A) has been associated with familial amyotrophic lateral sclerosis (fALS) and fronto-temporal dementia (FTD), based on identification of likely pathogenic variants in patients from distinct ALS and FTD cohorts. By screening a multicentric French cohort of 448 unrelated probands presenting with cerebellar ataxia, we identified ultra-rare TUBA4A missense variants, all being absent from public databases and predicted pathogenic by multiple in-silico tools. In addition, gene burden analyses in the 100,000 genomes project (100KGP) showed enrichment of TUBA4A rare variants in the inherited ataxia group compared to controls (OR: 57.0847 [10.2- 576.7]; p = 4.02 x10-07). Altogether, we report 12 patients presenting with spasticity and/or cerebellar ataxia and harboring a predicted pathogenic TUBA4A missense mutation, including 5 confirmed de novo cases and a mutation previously reported in a large family presenting with spastic ataxia. Cultured fibroblasts from 3 patients harboring distinct TUBA4A missense showed significant alterations in microtubule organisation and dynamics, providing insight of TUBA4A variants pathogenicity. Our data confirm the identification of a hereditary spastic ataxia disease gene with variable age of onset, expanding the clinical spectrum of TUBA4A associated phenotypes.

2.
Drug Metab Dispos ; 51(2): 183-192, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36351835

RESUMEN

Endoxifen (ENDX) is an active metabolite of tamoxifen (TAM), a drug commonly used for the treatment of estrogen receptor-positive breast cancer and metabolized by CYP2D6. Genetic or drug-induced reductions in CYP2D6 activity decrease plasma ENDX concentrations and TAM efficacy. It was proposed that direct oral administration of ENDX would circumvent the issues related to metabolic activation of TAM by CYP2D6 and increase patient response. Here, we characterized the pharmacokinetics and oral bioavailability of ENDX in female rats and dogs. Additionally, ENDX exposure was compared following equivalent doses of ENDX and TAM. ENDX exposure was 100-fold and 10-fold greater in rats and dogs, respectively, with ENDX administration compared with an equivalent dose of TAM. In single-dose administration studies, the terminal elimination half-life and plasma clearance values were 6.3 hours and 2.4 L/h per kg in rats given 2 mg/kg i.v. ENDX and 9.2 hours and 0.4 L/h/kg in dogs given 0.5 mg/kg i.v. ENDX, respectively. Plasma concentrations above 0.1 µM and 1 µM ENDX were achieved with 20-mg/kg and 200-mg/kg doses in rats, and concentrations above 1 µM and 10 µM were achieved with 15-mg/kg and 100-mg/kg doses in dogs. Oral absorption of ENDX was linear in rats and dogs, with bioavailability greater than 67% in rats and greater than 50% in dogs. In repeated-dose administration studies, ENDX peak plasma concentrations reached 9 µM in rats and 20 µM in dogs following four daily doses of 200 mg/kg or 30 mg/kg ENDX, respectively. The results indicate that ENDX has high oral bioavailability, and therapeutic concentrations were maintained after repeated dosing. Oral dosing of ENDX resulted in substantially higher ENDX concentrations than a similar dose of TAM. These data support the ongoing development of ENDX to overcome the limitations associated with CYP2D6-mediated metabolism of TAM in humans. SIGNIFICANCE STATEMENT: This study presents for the first time the pharmacokinetics and bioavailability of endoxifen and three key tamoxifen metabolites following repeated oral dosing in female rats and dogs. This study reports that endoxifen has high oral bioavailability, and therapeutic concentrations were maintained after repeated dosing. On the basis of these data, Z-endoxifen (Z-ENDX) was developed as a drug based upon the hypothesis that oral administration of Z-ENDX would overcome the limitations of CYP2D6 metabolism required for full metabolic activation of tamoxifen.


Asunto(s)
Neoplasias de la Mama , Citocromo P-450 CYP2D6 , Humanos , Femenino , Perros , Ratas , Animales , Citocromo P-450 CYP2D6/metabolismo , Disponibilidad Biológica , Tamoxifeno , Neoplasias de la Mama/metabolismo , Antineoplásicos Hormonales/farmacocinética
3.
Am J Med Genet A ; 188(3): 919-925, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34797033

RESUMEN

An infant was referred for evaluation of congenital glaucoma and corneal clouding. In addition, he had a pelvic kidney, hypotonia, patent ductus arteriosus, abnormal pinnae, and developmental delay. Exome sequencing identified a previously unpublished de novo single nucleotide insertion in PBX1 c.400dupG (NM_002585.3), predicted to cause a frameshift resulting in a truncated protein with loss of function (p.Ala134Glyfs*65). Identification of this loss of function variant supports the diagnosis of congenital anomalies of the kidney and urinary tract syndrome with or without hearing loss, abnormal ears, or developmental delay (CAKUTHED). Here, we propose glaucoma as an extra-renal manifestation associated with PBX1-related disease due to the relationship of PBX1 with MEIS1, MEIS2, and FOXC1 transcription factors associated with eye development.


Asunto(s)
Glaucoma , Sistema Urinario , Glaucoma/diagnóstico , Glaucoma/genética , Humanos , Lactante , Riñón/anomalías , Masculino , Fenotipo , Factor de Transcripción 1 de la Leucemia de Células Pre-B/genética , Factores de Transcripción/genética , Secuenciación del Exoma
4.
J Biol Chem ; 295(26): 8725-8735, 2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32376693

RESUMEN

The transcription factor GLI1 (GLI family zinc finger 1) plays a key role in the development and progression of multiple malignancies. To date, regulation of transcriptional activity at target gene promoters is the only molecular event known to underlie the oncogenic function of GLI1. Here, we provide evidence that GLI1 controls chromatin accessibility at distal regulatory regions by modulating the recruitment of SMARCA2 (SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily A, member 2) to these elements. We demonstrate that SMARCA2 endogenously interacts with GLI1 and enhances its transcriptional activity. Mapping experiments indicated that the C-terminal transcriptional activation domain of GLI1 and SMARCA2's central domains, including its ATPase motif, are required for this interaction. Interestingly, similar to SMARCA2, GLI1 overexpression increased chromatin accessibility, as indicated by results of the micrococcal nuclease assay. Further, results of assays for transposase-accessible chromatin with sequencing (ATAC-seq) after GLI1 knockdown supported these findings, revealing that GLI1 regulates chromatin accessibility at several regions distal to gene promoters. Integrated RNA-seq and ATAC-seq data analyses identified a subset of differentially expressed genes located in cis to these regulated chromatin sites. Finally, using the GLI1-regulated gene HHIP (Hedgehog-interacting protein) as a model, we demonstrate that GLI1 and SMARCA2 co-occupy a distal chromatin peak and that SMARCA2 recruitment to this HHIP putative enhancer requires intact GLI1. These findings provide insights into how GLI1 controls gene expression in cancer cells and may inform approaches targeting this oncogenic transcription factor to manage malignancies.


Asunto(s)
Cromatina/genética , Elementos Reguladores de la Transcripción , Factores de Transcripción/metabolismo , Sitio de Iniciación de la Transcripción , Proteína con Dedos de Zinc GLI1/metabolismo , Línea Celular Tumoral , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , ADN/genética , ADN/metabolismo , Células HEK293 , Humanos , Dominios Proteicos , Mapas de Interacción de Proteínas , Factores de Transcripción/química , Activación Transcripcional , Proteína con Dedos de Zinc GLI1/química
5.
J Biol Chem ; 295(9): 2698-2712, 2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-31988246

RESUMEN

The expression of the extracellular sulfatase SULF2 has been associated with increased hepatocellular carcinoma (HCC) growth and poor patient survival. However, the molecular mechanisms underlying SULF2-associated tumor growth remain unclear. To address this gap, here we developed a transgenic mouse overexpressing Sulf2 in hepatocytes under the control of the transthyretin promoter. In this model, Sulf2 overexpression potentiated diethylnitrosamine-induced HCC. Further analysis indicated that the transcription factor GLI family zinc finger 1 (GLI1) mediates Sulf2 expression during HCC development. A cross of the Sulf2-overexpressing with Gli1-knockout mice revealed that Gli1 inactivation impairs SULF2-induced HCC. Transcriptomic analysis revealed that Sulf2 overexpression is associated with signal transducer and activator of transcription 3 (STAT3)-specific gene signatures. Interestingly, the Gli1 knockout abrogated SULF2-mediated induction of several STAT3 target genes, including suppressor of cytokine signaling 2/3 (Socs2/3); Pim-1 proto-oncogene, Ser/Thr kinase (Pim1); and Fms-related tyrosine kinase 4 (Flt4). Human orthologs were similarly regulated by SULF2, dependent on intact GLI1 and STAT3 functions in HCC cells. SULF2 overexpression promoted a GLI1-STAT3 interaction and increased GLI1 and STAT3 enrichment at the promoters of their target genes. Interestingly, the SULF2 overexpression resulted in GLI1 enrichment at select STAT3 consensus sites, and vice versa. siRNA-mediated STAT3 or GLI1 knockdown reduced promoter binding of GLI1 and STAT3, respectively. Finally, chromatin-capture PCR confirmed long-range co-regulation of SOCS2 and FLT3 through changes in promoter conformation. These findings define a mechanism whereby SULF2 drives HCC by stimulating formation of a GLI1-STAT3 transcriptional complex.


Asunto(s)
Carcinoma Hepatocelular/etiología , Neoplasias Hepáticas/etiología , Factor de Transcripción STAT3/metabolismo , Sulfatasas/fisiología , Proteína con Dedos de Zinc GLI1/metabolismo , Animales , Carcinogénesis , Humanos , Ratones , Ratones Transgénicos , Regiones Promotoras Genéticas , Unión Proteica , Proto-Oncogenes Mas , Factores de Transcripción STAT , Sulfatasas/metabolismo , Transactivadores
6.
Biochem J ; 477(17): 3131-3145, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32766732

RESUMEN

The Hedgehog-regulated transcription factors GLI1 and GLI2 play overlapping roles in development and disease; however, the mechanisms underlying their interplay remain elusive. We report for the first time that GLI1 and GLI2 physically and functionally interact in cancer cells. GLI1 and GLI2 were shown to co-immunoprecipitate in PANC1 pancreatic cancer cells and RMS13 rhabdomyosarcoma cells. Mapping analysis demonstrated that the zinc finger domains of both proteins are required for their heteromerization. RNAi knockdown of either GLI1 or GLI2 inhibited expression of many well-characterized GLI target genes (BCL2, MYCN, PTCH2, IL7 and CCND1) in PANC1 cells, whereas PTCH1 expression was only inhibited by GLI1 depletion. qPCR screening of a large set of putative canonical and non-canonical Hedgehog/GLI targets identified further genes (e.g. E2F1, BMP1, CDK2) strongly down-regulated by GLI1 and/or GLI2 depletion in PANC1 cells, and demonstrated that ANO1, AQP1 and SOCS1 are up-regulated by knockdown of either GLI1 or GLI2. Chromatin immunoprecipitation showed that GLI1 and GLI2 occupied the same regions at the BCL2, MYCN and CCND1 promoters. Furthermore, depletion of GLI1 inhibited GLI2 occupancy at these promoters, suggesting that GLI1/GLI2 interaction is required for the recruitment of GLI2 to these sites. Together, these findings indicate that GLI1 and GLI2 co-ordinately regulate the transcription of some genes, and provide mechanistic insight into the roles of GLI proteins in carcinogenesis.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Proteínas Hedgehog/metabolismo , Proteínas Nucleares/metabolismo , Neoplasias Pancreáticas/metabolismo , Rabdomiosarcoma/metabolismo , Proteína con Dedos de Zinc GLI1/metabolismo , Proteína Gli2 con Dedos de Zinc/metabolismo , Línea Celular Tumoral , Proteínas Hedgehog/genética , Humanos , Proteínas Nucleares/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Multimerización de Proteína , Rabdomiosarcoma/genética , Rabdomiosarcoma/patología , Proteína con Dedos de Zinc GLI1/genética , Proteína Gli2 con Dedos de Zinc/genética
7.
Breast Cancer Res ; 22(1): 51, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32430040

RESUMEN

BACKGROUND: The tamoxifen metabolite, Z-endoxifen, demonstrated promising antitumor activity in endocrine-resistant estrogen receptor-positive (ER+) breast cancer. We compared the antitumor activity of Z-endoxifen with tamoxifen and letrozole in the letrozole-sensitive MCF7 aromatase expressing model (MCF7AC1), as well as with tamoxifen, fulvestrant, exemestane, and exemestane plus everolimus in a letrozole-resistant MCF7 model (MCF7LR). METHODS: MCF7AC1 tumor-bearing mice were randomized to control (no drug), letrozole (10 µg/day), tamoxifen (500 µg/day), or Z-endoxifen (25 and 75 mg/kg). Treatment in the letrozole arm was continued until resistance developed. MCF7LR tumor-bearing mice were then randomized to Z-endoxifen (50 mg/kg) or tamoxifen for 4 weeks and tumors harvested for microarray and immunohistochemistry analysis. The antitumor activity of Z-endoxifen in the MCF7LR tumors was further compared in a second in vivo study with exemestane, exemestane plus everolimus, and fulvestrant. RESULTS: In the MCF7AC1 tumors, both Z-endoxifen doses were significantly superior to control and tamoxifen in reducing tumor volumes at 4 weeks. Additionally, the 75 mg/kg Z-endoxifen dose was additionally superior to letrozole. Prolonged letrozole exposure resulted in resistance at 25 weeks. In MCF7LR tumor-bearing mice, Z-endoxifen significantly reduced tumor volumes compared to tamoxifen, letrozole, and exemestane, with no significant differences compared to exemestane plus everolimus and fulvestrant. Additionally, compared to tamoxifen, Z-endoxifen markedly inhibited ERα target genes, Ki67 and Akt expression in vivo. CONCLUSION: In endocrine-sensitive and letrozole-resistant breast tumors, Z-endoxifen results in robust antitumor and antiestrogenic activity compared to tamoxifen and aromatase inhibitor monotherapy. These data support the ongoing development of Z-endoxifen.


Asunto(s)
Inhibidores de la Aromatasa/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Receptores de Estrógenos/metabolismo , Tamoxifeno/análogos & derivados , Animales , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos , Femenino , Humanos , Letrozol/farmacología , Células MCF-7 , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Invasividad Neoplásica , Tamoxifeno/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Yale J Biol Med ; 89(4): 575-590, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-28018146

RESUMEN

Pancreatic cancer is the third leading cause of cancer mortality in the U.S. with close to 40,000 deaths per year. Pancreatic ductal adenocarcinoma (PDAC) represents approximately 90 percent of all pancreatic cancer cases and is the most lethal form of the disease. Current therapies for PDAC are ineffective and most patients cannot be treated by surgical resection. Most research efforts have primarily focused on how genetic alterations cause, alter progression, contribute to diagnosis, and influence PDAC management. Over the past two decades, a model has been advanced of PDAC initiation and progression as a multi-step process driven by the acquisition of mutations leading to loss of tumor suppressors and activation of oncogenes. The recognition of the essential roles of these genetic alterations in the development of PDAC has revolutionized our knowledge of this disease. However, none of these findings have turned into effective treatment for this dismal malignancy. In recent years, studies in the areas of chromatin modifications, and non-coding RNAs have uncovered mechanisms for regulating gene expression which occur independently of genetic alterations. Chromatin-based mechanisms are interwoven with microRNA-driven regulation of protein translation to create an integrated epigenetic language, which is grossly dysregulated in PDAC. Thus in PDAC, key tumor suppressors that are well established to play a role in PDAC may be repressed, and oncogenes can be upregulated secondary to epigenetic alterations. Unlike mutations, epigenetic changes are potentially reversible. Given this feature of epigenetic mechanisms, it is conceivable that targeting epigenetic-based events promoting and maintaining PDAC could serve as foundation for the development of new therapeutic and diagnostic approaches for this disease.


Asunto(s)
Epigénesis Genética/genética , Neoplasias Pancreáticas/genética , Animales , Ensamble y Desensamble de Cromatina , Humanos , ARN no Traducido/genética , Neoplasias Pancreáticas
9.
Pharmacogenet Genomics ; 25(4): 157-63, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25714002

RESUMEN

BACKGROUND: In tamoxifen-treated patients, breast cancer recurrence differs according to CYP2D6 genotype and endoxifen steady-state concentrations (Endx Css). The ¹³C-dextromethorphan breath test (DM-BT), labeled with ¹³C at the O-CH3 moiety, measures CYP2D6 enzyme activity. We sought to examine the ability of the DM-BT to identify known CYP2D6 genotypic poor metabolizers and examine the correlation between DM-BT and Endx Css. METHODS: DM-BT and tamoxifen pharmacokinetics were obtained at baseline, 3, and 6 months following tamoxifen initiation. Potent CYP2D6 inhibitors were prohibited. The correlation between baseline DM-BT with CYP2D6 genotype and Endx Css was determined. The association between baseline DM-BT (where values ≤0.9 is an indicator of poor in vivo CYP2D6 metabolism) and Endx Css (using values≤11.2 known to be associated with poorer recurrence free survival) was explored. RESULTS: A total of 91 patients were enrolled and 77 were eligible. CYP2D6 genotype was positively correlated with baseline, 3, and 6 months DM-BT (r ranging from 0.457-0. 60; P<0.001). Both CYP2D6 genotype (r=0.47, 0.56, P<0.0001), and baseline DM-BT (r=0.60, 0.54, P<0.001) were associated with 3 and 6 months Endx Css, respectively. Seven (78%) of nine patients with low (≤11.2 nmol/l) 3 month Endx Css also had low DM-BT (≤0.9) including 2/2 CYP2D6 PM/PM and 5/5 IM/PM. In contrast, one (2%) of 48 patients with a low DM-BT had Endx Css more than 11.2 nmol/l. CONCLUSION: In patients not taking potent CYP2D6 inhibitors, DM-BT was associated with CYP2D6 genotype and 3 and 6 months Endx Css but did not provide better discrimination of Endx Css compared with CYP2D6 genotype alone. Further studies are needed to identify additional factors which alter Endx Css.


Asunto(s)
Antineoplásicos Hormonales/farmacocinética , Antitusígenos , Neoplasias de la Mama/tratamiento farmacológico , Pruebas Respiratorias/métodos , Citocromo P-450 CYP2D6/genética , Dextrometorfano , Tamoxifeno/farmacocinética , Adulto , Anciano , Anciano de 80 o más Años , Antineoplásicos Hormonales/administración & dosificación , Neoplasias de la Mama/enzimología , Femenino , Genotipo , Humanos , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Tamoxifeno/administración & dosificación , Resultado del Tratamiento
10.
Toxicol Pathol ; 42(8): 1188-96, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24670817

RESUMEN

Endoxifen (4-hydroxy-N-desmethyl-tamoxifen), one of the major active metabolites of tamoxifen, has substantially greater estrogen antagonist properties and antiproliferative effects in breast tumor cells than tamoxifen, a mixed estrogen agonist/antagonist. An associated risk of endometrial cancer and hyperplasia has been linked to the estrogen agonist properties of tamoxifen. We evaluated endoxifen using a classic uterotrophic effects method. Rats were given endoxifen or tamoxifen orally for 3 days. Estradiol was the positive control. Endoxifen and tamoxifen plasma levels exceeded those previously observed clinically. Uterine weight was 3-fold higher in the estradiol group than in the tamoxifen or endoxifen groups, which did not differ from vehicle controls. Tamoxifen and endoxifen caused a greater increase in luminal epithelial cell height than estradiol. Both tamoxifen and endoxifen produced an increase in the stromal BrdU labeling index (LI) that was ≤ estradiol and inversely related to dose, but did not affect luminal epithelial cell BrdU LI. As expected, estradiol increased luminal epithelial cell proliferation. These results indicate that endoxifen induces uterotrophic effects, but is less potent than estradiol in eliciting these effects. Given prior preclinical observations that endoxifen has superior antitumor activity than tamoxifen, the observations of similar uterine effects suggest that the endoxifen risk/benefit ratio may be superior to tamoxifen.


Asunto(s)
Ovariectomía , Tamoxifeno/análogos & derivados , Tamoxifeno/toxicidad , Útero/efectos de los fármacos , Animales , Proliferación Celular/efectos de los fármacos , Endometrio/química , Endometrio/efectos de los fármacos , Femenino , Histocitoquímica , Hipertrofia/inducido químicamente , Tamaño de los Órganos/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Útero/química
11.
Invest New Drugs ; 31(6): 1559-67, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24114122

RESUMEN

PURPOSE: We performed a UGT1A1 genotype-guided study to determine the maximum tolerated dose (MTD) and evaluate the toxicities and pharmacokinetics of the combination of capecitabine (CAP), oxaliplatin (OX), and irinotecan (IRIN). EXPERIMENTAL DESIGN: Patients were screened for UGT1A1 *28 genotype prior to treatment. The starting dose (mg/m(2)) was IRIN (150), OX (85) and CAP (400), days 2-15. Doses were escalated or de-escalated within each genotype group (*28/*28, *1/*28 and *1/*1). IRIN pharmacokinetics was performed at the MTD. RESULTS: 50 patients were evaluable for toxicity [11 (*28/*28); 18 (*1/*28); 21 (*1/*1)]. UGT1A1 *28/*28 patients experienced hematologic dose limiting toxicity (DLT), requiring dose-de-escalation. The UGT1A1 *28/*28 recommended phase 2 dose (RP2D) was IRIN (75), OX (85), and CAP (400). In contrast, both UGT1A1 *1/*28 and *1/*1 tolerated higher doses of IRIN and non-hematologic toxicity was dose limiting for UGT1A1 *1/*1. The RP2D was IRIN (150), OX (85), and CAP (400) for UGT1A1*1/*28 and IRIN (150), OX (100), and CAP (1600) for UGT1A1 *1/*1. UGT1A1 *1/*28 and *1/*1 patients treated with IRIN (150) had similar AUCs for the active irinotecan metabolite, SN38 (366 +/- 278 and 350 +/- 159 ng/ml*hr, respectively). UGT1A1 *28/*28 patients (n = 3) treated with a lower IRIN dose (100) had non-significantly higher mean SN38 exposures (604 +/- 289 ng/ml*hr, p = 0.14). Antitumor activity was observed in all genotype groups. CONCLUSIONS: UGT1A1 genotype affects the dose and pharmacokinetics of the CAPIRINOX regimen and UGT1A1 genotype-guided dosing of CAPIRINOX is ongoing in a phase II study of small bowel cancer (NCT00433550).


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Glucuronosiltransferasa/genética , Neoplasias/tratamiento farmacológico , Adulto , Anciano , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Camptotecina/administración & dosificación , Camptotecina/análogos & derivados , Camptotecina/sangre , Camptotecina/farmacocinética , Capecitabina , Desoxicitidina/administración & dosificación , Desoxicitidina/análogos & derivados , Femenino , Fluorouracilo/administración & dosificación , Fluorouracilo/análogos & derivados , Genotipo , Humanos , Irinotecán , Masculino , Dosis Máxima Tolerada , Persona de Mediana Edad , Neoplasias/sangre , Neoplasias/genética , Compuestos Organoplatinos/administración & dosificación , Oxaliplatino
12.
Pediatr Blood Cancer ; 60(2): 237-41, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22745043

RESUMEN

BACKGROUND: Pemetrexed is a multi-targeted antifolate that inhibits key enzymes involved in nucleotide biosynthesis. We performed a phase 2 trial of pemetrexed in children with refractory or recurrent solid tumors, including CNS tumors, to estimate the response rate and further define its toxicity profile. PROCEDURE: Pemetrexed, at a dose of 1910 mg/m(2) , was administered as a 10-minute intravenous infusion every 21 days. Patients also received vitamin B(12) , daily multivitamin supplementation, and dexamethasone. A two-stage design (10 + 10) was employed in each of the following disease strata: osteosarcoma, Ewing sarcoma/peripheral primitive neuroectodermal tumor (PNET), rhabdomyosarcoma, neuroblastoma, ependymoma, medulloblastoma/supratentorial PNET, and non-brainstem high-grade glioma. RESULTS: Seventy-two eligible subjects (39 males) were enrolled. Median age was 11 years (range 3-23). Sixty-eight were evaluable for response. The median number of cycles administered was 2 (range 1-13). No complete or partial responses were observed. Stable disease, for a median of 5 (range 4-13) cycles, was observed in five patients (ependymoma, Ewing sarcoma, medulloblastoma, neuroblastoma, osteosarcoma; n = 1 each). Neutropenia (44%), anemia (35%), and elevated alanine transaminase (35%) attributable to pemetrexed were the most commonly recurring toxicities observed in patients receiving multiple cycles. Other toxicities attributed to pemetrexed occurring in ≥10% of cycles included thrombocytopenia (30%), fatigue (18%), nausea (14), hyperglycemia (13%), rash (11%), vomiting (13%), and hypophosphatemia (11%). CONCLUSIONS: Pemetrexed, administered as an intravenous infusion every 21 days, was tolerable in children and adolescents with refractory solid tumors, including CNS tumors, but did not show evidence of objective anti-tumor activity in the childhood tumors studied.


Asunto(s)
Antimetabolitos Antineoplásicos/uso terapéutico , Glutamatos/uso terapéutico , Guanina/análogos & derivados , Neoplasias/tratamiento farmacológico , Adolescente , Antimetabolitos Antineoplásicos/administración & dosificación , Antimetabolitos Antineoplásicos/efectos adversos , Niño , Preescolar , Femenino , Glutamatos/administración & dosificación , Glutamatos/efectos adversos , Guanina/administración & dosificación , Guanina/efectos adversos , Guanina/uso terapéutico , Humanos , Infusiones Intravenosas , Masculino , Pemetrexed , Resultado del Tratamiento , Adulto Joven
13.
Commun Biol ; 6(1): 215, 2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36823213

RESUMEN

Considerable efforts have been made to characterize active enhancer elements, which can be annotated by accessible chromatin and H3 lysine 27 acetylation (H3K27ac). However, apart from poised enhancers that are observed in early stages of development and putative silencers, the functional significance of cis-regulatory elements lacking H3K27ac is poorly understood. Here we show that macroH2A histone variants mark a subset of enhancers in normal and cancer cells, which we coined 'macro-Bound Enhancers', that modulate enhancer activity. We find macroH2A variants localized at enhancer elements that are devoid of H3K27ac in a cell type-specific manner, indicating a role for macroH2A at inactive enhancers to maintain cell identity. In following, reactivation of macro-bound enhancers is associated with oncogenic programs in breast cancer and their repressive role is correlated with the activity of macroH2A2 as a negative regulator of BRD4 chromatin occupancy. Finally, through single cell epigenomic profiling of normal mammary stem cells derived from mice, we show that macroH2A deficiency facilitates increased activity of transcription factors associated with stem cell activity.


Asunto(s)
Proteínas Nucleares , Factores de Transcripción , Ratones , Animales , Proteínas Nucleares/metabolismo , Factores de Transcripción/genética , Reprogramación Celular/genética , Elementos de Facilitación Genéticos , Cromatina/genética
14.
iScience ; 26(6): 106818, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37235056

RESUMEN

Autoimmune polyendocrine syndrome type 1 (APS-1) is an autosomal recessive disease characterized by severe and childhood onset organ-specific autoimmunity caused by mutations in the autoimmune regulator (AIRE) gene. More recently, dominant-negative mutations within the PHD1, PHD2, and SAND domains have been associated with an incompletely penetrant milder phenotype with later onset familial clustering, often masquerading as organ-specific autoimmunity. Patients with immunodeficiencies or autoimmunity where genetic analyses revealed heterozygous AIRE mutations were included in the study and the dominant-negative effects of the AIRE mutations were functionally assessed in vitro. We here report additional families with phenotypes ranging from immunodeficiency, enteropathy, and vitiligo to asymptomatic carrier status. APS-1-specific autoantibodies can hint to the presence of these pathogenic AIRE variants although their absence does not rule out their presence. Our findings suggest functional studies of heterozygous AIRE variants and close follow-up of identified individuals and their families.

15.
Sci Adv ; 8(49): eabq8437, 2022 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-36490346

RESUMEN

Dysregulation of kinase signaling pathways favors tumor cell survival and therapy resistance in cancer. Here, we reveal a posttranslational regulation of kinase signaling and nuclear receptor activity via deubiquitination in T cell acute lymphoblastic leukemia (T-ALL). We observed that the ubiquitin-specific protease 11 (USP11) is highly expressed and associates with poor prognosis in T-ALL. USP11 ablation inhibits leukemia progression in vivo, sparing normal hematopoiesis. USP11 forms a complex with USP7 to deubiquitinate the oncogenic lymphocyte cell-specific protein-tyrosine kinase (LCK) and enhance its activity. Impairment of LCK activity leads to increased glucocorticoid receptor (GR) expression and glucocorticoids sensitivity. Genetic knockout of USP7 improved the antileukemic efficacy of glucocorticoids in vivo. The transcriptional activation of GR target genes is orchestrated by the deubiquitinase activity and mediated via an increase in enhancer-promoter interaction intensity. Our data unveil how dysregulated deubiquitination controls leukemia survival and drug resistance, suggesting previously unidentified therapeutic combinations toward targeting leukemia.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Línea Celular Tumoral , Glucocorticoides/farmacología , Glucocorticoides/uso terapéutico , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Receptores de Glucocorticoides/metabolismo , Transducción de Señal , Tioléster Hidrolasas/metabolismo , Tioléster Hidrolasas/uso terapéutico , Peptidasa Específica de Ubiquitina 7/metabolismo
16.
Nat Commun ; 12(1): 2901, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-34006870

RESUMEN

Proliferative chronic myelomonocytic leukemia (pCMML), an aggressive CMML subtype, is associated with dismal outcomes. RAS pathway mutations, mainly NRASG12D, define the pCMML phenotype as demonstrated by our exome sequencing, progenitor colony assays and a Vav-Cre-NrasG12D mouse model. Further, these mutations promote CMML transformation to acute myeloid leukemia. Using a multiomics platform and biochemical and molecular studies we show that in pCMML RAS pathway mutations are associated with a unique gene expression profile enriched in mitotic kinases such as polo-like kinase 1 (PLK1). PLK1 transcript levels are shown to be regulated by an unmutated lysine methyl-transferase (KMT2A) resulting in increased promoter monomethylation of lysine 4 of histone 3. Pharmacologic inhibition of PLK1 in RAS mutant patient-derived xenografts, demonstrates the utility of personalized biomarker-driven therapeutics in pCMML.


Asunto(s)
Proteínas de Ciclo Celular/genética , GTP Fosfohidrolasas/genética , N-Metiltransferasa de Histona-Lisina/genética , Leucemia Mielomonocítica Crónica/genética , Proteínas de la Membrana/genética , Mutación , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Animales , Proteínas de Ciclo Celular/metabolismo , GTP Fosfohidrolasas/metabolismo , Perfilación de la Expresión Génica/métodos , Regulación Leucémica de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/metabolismo , Estimación de Kaplan-Meier , Leucemia Mielomonocítica Crónica/metabolismo , Leucemia Mielomonocítica Crónica/terapia , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Transducción de Señal/genética , Trasplante de Células Madre/métodos , Trasplante Homólogo , Secuenciación del Exoma/métodos , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Quinasa Tipo Polo 1
17.
J Neurooncol ; 99(1): 73-80, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20063115

RESUMEN

Irinotecan has radiosensitizing effects and shows synergism with nitrosoureas. We performed a Phase II study of RT and irinotecan, followed by BCNU plus irinotecan in newly-diagnosed GBM. The MTD for patients receiving enzyme-inducing anticonvulsants (EIAC) was as follows: irinotecan 400 mg/m(2)/week on Days 1, 8, 22 and 29 during RT, followed by BCNU 100 mg/m(2) Day 1, and irinotecan, 400 mg/m(2) on Days 1, 8, 22 and 29, every 6 weeks. The MTD for non-EIAC patients was as follows: irinotecan 125 mg/m(2)/week on Days 1, 8, 22 and 29 during RT, followed by BCNU 100 mg/m(2) Day 1 and irinotecan 75 mg/m(2) Days 1, 8, 22 and 29, every 6 weeks. Median OS was 10.8 mos. (95% CI: 7.7-14.9); OS at 12 months was 44.6% (95% CI: 33.3-59.8) and PFS 6 was 28.6% (95% CI: 18.9-43.2). Patients went off treatment due to adverse events (7%), refusal (11%), progressive disease (48%), death (9%), and other (9%); 16% completed protocol treatment. Survival was similar in patients with variant (6/7 or 7/7) and wild-type (6/6) UGT1A1*28 genotypic alleles. Grade 3-4 toxicity was more common in non-EIAC patients with variant alleles. SN-38 C(max) and AUC in EIAC patients receiving 400 mg/m(2) irinotecan were 20.9 ng/ml and 212 ng/ml h, and in non-EIAC patients receiving 125 mg/m(2), 15.5 ng/ml and 207 ng/ml h. SN-38 AUC varied by UGT1A1*28 status in non-EIAC patients. This regimen was not significantly active and radiosensitization was not observed. Non-EIAC patients with UGT1A1*28 variant alleles appear particularly sensitive to toxicity from irinotecan.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias Encefálicas/terapia , Camptotecina/análogos & derivados , Carmustina/uso terapéutico , Glioblastoma/terapia , Radioterapia/métodos , Adulto , Anciano , Anciano de 80 o más Años , Protocolos de Quimioterapia Combinada Antineoplásica , Área Bajo la Curva , Camptotecina/uso terapéutico , Estudios de Cohortes , Supervivencia sin Enfermedad , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Irinotecán , Masculino , Persona de Mediana Edad , Estadística como Asunto , Factores de Tiempo , Adulto Joven
18.
Pediatr Blood Cancer ; 54(4): 538-45, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20049936

RESUMEN

BACKGROUND: In preclinical models, temozolomide, and vincristine are additive or synergistic with irinotecan. We examined this three-drug combination in children with relapsed solid tumors. Patients received orally administered irinotecan together with temozolomide and vincristine on two different schedules, using cefixime to reduce irinotecan-associated diarrhea. METHODS: Oral irinotecan was given daily on days 1-5 and 8-12 (Schedule A), or on days 1-5 (Schedule B). Temozolomide was given on days 1-5, with vincristine 1.5 mg/m(2) administered on days 1 and 8 (Schedule A) or day 1 (Schedule B) in 21-day courses. RESULTS: On Schedule A, the maximum tolerated dose of oral irinotecan was 35 mg/m(2)/day combined with temozolomide 100 mg/m(2)/day and vincristine on days 1 and 8. Dose-limiting toxicities in 4 of 12 patients included hepatotoxicity, abdominal pain, anorexia, hypokalemia, and thrombocytopenia at 50 mg/m(2)/day. Using Schedule B, 0 of 6 patients experienced dose-limiting toxicity (DLT) at the highest doses studied of oral irinotecan 90 mg/m(2)/day, temozolomide 150 mg/m(2)/day x 5, and vincristine on day 1. First-course and cumulative toxicity was greater with Schedule A. UGT1A1*28 genotype did not correlate with DLT. At the irinotecan dose of 90 mg/m(2)/day, the mean SN-38 AUC(inf) was 63 ng/ml hr. Activity was seen in sarcoma patients, and overall eight patients received >or=6 courses. CONCLUSIONS: The 5-day schedule of VOIT was well tolerated and provided SN-38 exposures similar to those achieved with intravenous IRN. Activity on this and prior studies suggests a potential role for VOIT in a spectrum of childhood solid tumors.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Recurrencia Local de Neoplasia/tratamiento farmacológico , Neoplasias/tratamiento farmacológico , Adolescente , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Área Bajo la Curva , Camptotecina/administración & dosificación , Camptotecina/efectos adversos , Camptotecina/análogos & derivados , Camptotecina/farmacocinética , Niño , Preescolar , Dacarbazina/administración & dosificación , Dacarbazina/efectos adversos , Dacarbazina/análogos & derivados , Dacarbazina/farmacocinética , Femenino , Humanos , Lactante , Irinotecán , Masculino , Temozolomida , Vincristina/administración & dosificación , Vincristina/efectos adversos , Vincristina/farmacocinética , Adulto Joven
19.
Genome Biol ; 21(1): 247, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32933554

RESUMEN

BACKGROUND: The three-dimensional genome organization is critical for gene regulation and can malfunction in diseases like cancer. As a key regulator of genome organization, CCCTC-binding factor (CTCF) has been characterized as a DNA-binding protein with important functions in maintaining the topological structure of chromatin and inducing DNA looping. Among the prolific binding sites in the genome, several events with altered CTCF occupancy have been reported as associated with effects in physiology or disease. However, hitherto there is no comprehensive survey of genome-wide CTCF binding patterns across different human cancers. RESULTS: To dissect functions of CTCF binding, we systematically analyze over 700 CTCF ChIP-seq profiles across human tissues and cancers and identify cancer-specific CTCF binding patterns in six cancer types. We show that cancer-specific lost and gained CTCF binding events are associated with altered chromatin interactions, partially with DNA methylation changes, and rarely with sequence mutations. While lost bindings primarily occur near gene promoters, most gained CTCF binding events exhibit enhancer activities and are induced by oncogenic transcription factors. We validate these findings in T cell acute lymphoblastic leukemia cell lines and patient samples and show that oncogenic NOTCH1 induces specific CTCF binding and they cooperatively activate expression of target genes, indicating transcriptional condensation phenomena. CONCLUSIONS: Specific CTCF binding events occur in human cancers. Cancer-specific CTCF binding can be induced by other transcription factors to regulate oncogenic gene expression. Our results substantiate CTCF binding alteration as a functional epigenomic signature of cancer.


Asunto(s)
Factor de Unión a CCCTC/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias/metabolismo , Metilación de ADN , Humanos , Oncogenes , Receptor Notch1/metabolismo
20.
JAMA ; 302(13): 1429-36, 2009 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-19809024

RESUMEN

CONTEXT: The growth inhibitory effect of tamoxifen, which is used for the treatment of hormone receptor-positive breast cancer, is mediated by its metabolites, 4-hydroxytamoxifen and endoxifen. The formation of active metabolites is catalyzed by the polymorphic cytochrome P450 2D6 (CYP2D6) enzyme. OBJECTIVE: To determine whether CYP2D6 variation is associated with clinical outcomes in women receiving adjuvant tamoxifen. DESIGN, SETTING, AND PATIENTS: Retrospective analysis of German and US cohorts of patients treated with adjuvant tamoxifen for early stage breast cancer. The 1325 patients had diagnoses between 1986 and 2005 of stage I through III breast cancer and were mainly postmenopausal (95.4%). Last follow-up was in December 2008; inclusion criteria were hormone receptor positivity, no metastatic disease at diagnosis, adjuvant tamoxifen therapy, and no chemotherapy. DNA from tumor tissue or blood was genotyped for CYP2D6 variants associated with reduced (*10, *41) or absent (*3, *4, *5) enzyme activity. Women were classified as having an extensive (n=609), heterozygous extensive/intermediate (n=637), or poor (n=79) CYP2D6 metabolism. MAIN OUTCOME MEASURES: Time to recurrence, event-free survival, disease-free survival, and overall survival. RESULTS: Median follow-up was 6.3 years. At 9 years of follow-up, the recurrence rates were 14.9% for extensive metabolizers, 20.9% for heterozygous extensive/intermediate metabolizers, and 29.0% for poor metabolizers, and all-cause mortality rates were 16.7%, 18.0%, and 22.8%, respectively. Compared with extensive metabolizers, there was a significantly increased risk of recurrence for heterozygous extensive/intermediate metabolizers (time to recurrence adjusted hazard ratio [HR], 1.40; 95% confidence interval [CI], 1.04-1.90) and for poor metabolizers (time to recurrence HR, 1.90; 95% CI, 1.10-3.28). Compared with extensive metabolizers, those with decreased CYP2D6 activity (heterozygous extensive/intermediate and poor metabolism) had worse event-free survival (HR, 1.33; 95% CI, 1.06-1.68) and disease-free survival (HR, 1.29; 95% CI, 1.03-1.61), but there was no significant difference in overall survival (HR, 1.15; 95% CI, 0.88-1.51). CONCLUSION: Among women with breast cancer treated with tamoxifen, there was an association between CYP2D6 variation and clinical outcomes, such that the presence of 2 functional CYP2D6 alleles was associated with better clinical outcomes and the presence of nonfunctional or reduced-function alleles with worse outcomes.


Asunto(s)
Antineoplásicos Hormonales/uso terapéutico , Neoplasias de la Mama , Citocromo P-450 CYP2D6/genética , Polimorfismo Genético , Tamoxifeno/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/genética , Neoplasias de la Mama/mortalidad , Citocromo P-450 CYP2D6/metabolismo , Femenino , Genotipo , Humanos , Farmacogenética , Fenotipo , Modelos de Riesgos Proporcionales , Análisis de Supervivencia , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda