RESUMEN
In this work, we used photoinert anhydrous cerium(III) chloride, to form a transient charge-transfer (CT) complex with NXS (N-bromosuccinimide or NBS and N-iodosuccinimide or NIS) in acetonitrile. These transient CT complexes acted as a semi-heterogeneous photocatalyst. These complexes allowed the Ce(III) ions to absorb light, turning them into strong electron donors that transferred electrons to NXS. This created halide radicals from NXS radical anions, helping to turn N-propargylamides into oxazole aldehydes. Experiments with DMPO and spin-trapping showed that a radical-based mechanism followed a single electron transfer (SET) pathway. Notably, CeCl3 was reused after the reaction without much decomposition, as it was regenerated and separated through simple filtration.
RESUMEN
The atom transfer radical addition (ATRA) reaction is defined as a method for introducing halogenated compounds into alkenes via a radical mechanism. In this study, we present an ATRA approach for achieving regioselective functionalization of quinoxalin-2(1H)-ones by activating C-Br bonds of CBr4 and subsequent trihaloalkyl-carbofunctionalization of styrenes employing the 9-mesityl-10-methylacridinium perchlorate (Fukuzumi) photocatalyst under 3W blue LED (450-470 nm) irradiation. This three-component radical cascade process demonstrates remarkable efficiency in the synthesis of 1-methyl-3-(3,3,3-tribromo-1-(4-chlorophenyl)propyl)quinoxalin-2(1H)-one derivatives.
RESUMEN
This study demonstrates the successful formation of a radical anion intermediate in a moist atmosphere, facilitating chemical reactions by activating aerial dioxygen through a single electron transfer (SET) mechanism. Derived from deprotonating quinoxaline-2(1H)-one with KOtBu, it shows potential in oxygenation chemistry. Validation comes from radical scavenging and EPR experiments.