Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Eur J Immunol ; 53(4): e2250100, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36648433

RESUMEN

Autoimmune hepatitis (AIH) eventually progresses to liver fibrosis, cirrhosis, and even hepatocellular carcinoma, causing irreversible damage to the liver. Concanavalin A-induced hepatitis in mice is a well-established model with pathophysiology similar to that of immune-mediated liver injury in human viral and autoimmune hepatitis, and it has been widely used to explore the pathogenesis and clinical treatment of human immune hepatitis. Artemisinin has been shown to exhibit anti-inflammatory effects through unclear mechanisms. In this study, we aimed to assess the effect of the artemisinin derivative TPN10466 on AIH. In vitro studies showed that TPN10466 dose dependently inhibited the percentage of IFN-γ-producing T cells. Further studies showed that TPN10466 attenuated the disease severity of AIH by downregulating the ability of lymphocytes to secrete IFN-γ and by reducing lymphocyte number in the liver. In addition, we found that TPN10466 treatment reduced T-cell responses by inhibiting JNK, ERK, and p38 pathways. In conclusion, our work suggests that TPN10466 provides protection against the autoimmune disease AIH by suppressing the inflammatory response of T cells, suggesting that TPN10466 may be a promising potential agent for the treatment of AIH.


Asunto(s)
Artemisininas , Hepatitis Autoinmune , Animales , Humanos , Ratones , Artemisininas/metabolismo , Artemisininas/farmacología , Artemisininas/uso terapéutico , Concanavalina A/metabolismo , Concanavalina A/farmacología , Concanavalina A/uso terapéutico , Hepatitis Autoinmune/tratamiento farmacológico , Hígado/patología , Sistema de Señalización de MAP Quinasas
2.
Cell Immunol ; 373: 104500, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35276582

RESUMEN

Multiple sclerosis (MS) was one of the major conditions causing neurological dysfunction and was an incurable progressive central nervous system disease. Experimental autoimmune encephalomyelitis (EAE) was the most commonly used experimental model of MS. Artemisinin have been shown to exhibit anti-inflammatory effects through unclear mechanisms. In this study, we aimed to evaluate the effect of administration of the artemisinin derivative TPN10466 in EAE. TPN10466 alleviated the severity of disease in EAE. Further studies showed that TPN10466 inhibited lymphocyte migration by downregulating chemokine expression and adhesion molecules. In addition, studies showed that TPN10466 directly inhibited Th1 and Th17 differentiation and reduced Th1 and Th17 infiltration into the central nervous system. In conclusion, our work demonstrated that TPN10466 provided protection against the autoimmune disease EAE by inhibiting the migration of immune cells and suppressing Th1/Th17 differentiation, suggesting that TPN10466 could be a potential for promising potential agent for the treatment of MS/EAE.


Asunto(s)
Artemisininas , Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Animales , Artemisininas/metabolismo , Artemisininas/farmacología , Artemisininas/uso terapéutico , Diferenciación Celular , Movimiento Celular , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/metabolismo , Índice de Severidad de la Enfermedad , Células TH1 , Células Th17
3.
Inflammation ; 47(1): 333-345, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37805951

RESUMEN

There is a potential association between the dysregulation of trace elements and impaired liver function. Elevated levels of manganese, an essential metal ion, have been observed in liver-related diseases, and excessive intake of manganese can worsen liver damage. However, the specific mechanisms underlying manganese-induced liver injury are not well understood. The aim of our study was to investigate the effects of excess manganese on autoimmune hepatitis (AIH) and elucidate its mechanisms. Our findings revealed that manganese exacerbates liver damage under ConA-induced inflammatory conditions. Transcriptomic and experimental data suggested that manganese enhances inflammatory signaling and contributes to the inflammatory microenvironment in the liver of AIH mice. Further investigations demonstrated that manganese exacerbates liver injury by activating the cGAS-STING signaling pathway and its downstream pro-inflammatory factors such as IFN[Formula: see text], IFN[Formula: see text], TNF[Formula: see text], and IL-6 in the liver of AIH mice. These results suggest that manganese overload promotes the progression of AIH by activating cGAS-STING-mediated inflammation, providing a new perspective for the treatment and prognosis of AIH.


Asunto(s)
Hepatitis Autoinmune , Manganeso , Ratones , Animales , Manganeso/toxicidad , Nucleotidiltransferasas/metabolismo , Transducción de Señal , Inflamación/inducido químicamente
4.
J Neuroimmune Pharmacol ; 19(1): 6, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38411708

RESUMEN

Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS) mediated by immune cells, in which auto-reactive CD4+ T cells have been implicated as a major driver in the pathogenesis of the disease. In this study, we aimed to investigate whether the artemisinin derivative TPN10475 could alleviate experimental autoimmune encephalomyelitis (EAE), a commonly used animal model of MS and its possible mechanisms. TPN10475 effectively resisted the reduction of TGF-ß signal transduction induced by TCR stimulation, suppressed the activation and function of effector CD4+ T cells in vitro, and restricted the differentiation of pathogenic Th1 and Th17 cells. It was also found to negatively regulate the inflammatory response in EAE by reducing the peripheral activation drive of auto-reactive helper T lymphocytes, inhibiting the migration of inflammatory cells into the CNS to attenuate EAE. The above results suggested that the upregulation of TGF-ß signal transduction may provide new ideas for the study of MS pathogenesis and have positive implications for the development of drugs for the treatment of autoimmune diseases.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Animales , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Esclerosis Múltiple/tratamiento farmacológico , Células Th17 , Transducción de Señal , Factor de Crecimiento Transformador beta
5.
Int Immunopharmacol ; 123: 110787, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37591119

RESUMEN

Multiple sclerosis (MS) is one of the most common autoimmune diseases of central nervous system (CNS) demyelination. Experimental autoimmune encephalomyelitis (EAE) is the most classic animal model for simulating the onset of clinical symptoms in MS. Previous research has reported the anti-inflammatory effects of artemisinin on autoimmune diseases. In our study, we identified a novel small molecule, TPN10518, an artemisinin derivative, which plays a protective role on the EAE model. We found that TPN10518 reduced CNS inflammatory cell infiltration and alleviated clinical symptoms of EAE. In addition, TPN10518 downregulated the production of Th1 and Th17 cells in vivo and in vitro, and decrease the levels of related chemokines. RNA-seq assay combined with the experimental results demonstrated that TPN10518 lowered the mRNA and protein levels of the AP1 subunits c-Fos and c-Jun in EAE mice. It was further confirmed that TPN10518 was dependent on AP1 to inhibit the differentiation of Th1 and Th17 cells. The results suggest that TPN10518 reduces the production of Th1 and Th17 cells through inhibition of AP1 to alleviate the severity of EAE disease. It is expected to be a potential drug for the treatment of MS.


Asunto(s)
Artemisininas , Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Animales , Ratones , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Células Th17 , Esclerosis Múltiple/tratamiento farmacológico , Diferenciación Celular
6.
Immunobiology ; 228(2): 152341, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36680977

RESUMEN

Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS), characterized by demyelinating neuropathy. Despite a long period of research on the immune mechanisms involved in CNS diseases, the etiology of MS remains unknown. MS may present with different clinical and pathological manifestations due to the involvement of different pathogenic processes, including balance and mobility disorders, psychiatric abnormalities, and intestinal dysfunction. We used an animal model of MS, experimental autoimmune encephalomyelitis (EAE), to assess clinical symptoms of MS with the aim of creating new indicators for the assessment of EAE. Our results show that EAE mice develop severe bone loss, anxiety-like moods, and intestinal inflammation in addition to clinical phenomena such as inflammatory infiltration and demyelination of the spinal cord. Our new indicators aim to provide a more comprehensive assessment of MS to avoid the pitfalls of a single intervention and also to provide a more systematic assessment of the effectiveness of drugs used to treat MS.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Ratones , Animales , Ratones Endogámicos C57BL , Sistema Nervioso Central , Médula Espinal
7.
Int Immunopharmacol ; 121: 110458, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37302366

RESUMEN

Apoptosis is a natural physiological process that can maintain the homeostasis of the body and immune system. This process plays an important role in the system's resistance to autoimmune development. Because of the dysfunction of cell apoptosis mechanism, the number of autoreactive cells in the peripheral tissue increases along with their accumulation. This will lead to the development of autoimmune diseases, such as multiple sclerosis (MS). MS is an immune-mediated disease of the central nervous system characterized by severe white matter demyelination. Because of the complexity of its pathogenesis, there is no drug to cure it completely. Experimental autoimmune encephalomyelitis (EAE) is an ideal animal model for the study of MS. Carboplatin (CA) is a second-generation platinum anti-tumor drug. In this study, we attempted to assess whether CA could be used to ameliorate EAE. CA reduced spinal cord inflammation, demyelination, and disease scores in mice with EAE. Moreover, the number and proportion of pathogenic T cells especially Th1 and Th17 in the spleen and draining lymph nodes were reduced in CA-treated EAE mice. Proteomic differential enrichment analysis showed that the proteins related to apoptosis signal changed significantly after CA treatment. CFSE experiment showed that CA significantly inhibited the T cell proliferation. Finally, CA also induced apoptosis in activated T cells and MOG-specific T cells in vitro. Overall, our findings indicated that CA plays a protective role in the initiation and progression of EAE and has the potential to be a novel drug in the treatment of MS.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Ratones , Animales , Carboplatino/efectos adversos , Carboplatino/metabolismo , Proteómica , Esclerosis Múltiple/patología , Apoptosis , Ratones Endogámicos C57BL , Células Th17 , Células TH1
8.
Int J Biol Sci ; 19(11): 3576-3594, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37497007

RESUMEN

Increasing evidence suggests that immunometabolism has started to unveil the role of metabolism in shaping immune function and autoimmune diseases. In this study, our data show that purinergic receptor P2Y12 (P2RY12) is highly expressed in concanavalin A (ConA)-induced immune hepatitis mouse model and serves as a potential metabolic regulator in promoting metabolic reprogramming from oxidative phosphorylation to glycolysis in T cells. P2RY12 deficiency or inhibition of P2RY12 with P2RY12 inhibitors (clopidogrel and ticagrelor) are proved to reduce the expression of inflammatory mediators, cause CD4+ and CD8+ effector T cells hypofunction and protect the ConA-induced immune hepatitis. A combined proteomics and metabolomics analysis revealed that P2RY12 deficiency causes redox imbalance and leads to reduced aerobic glycolysis by downregulating the expression of hexokinase 2 (HK2), a rate-limiting enzyme of the glycolytic pathway, indicating that HK2 might be a promising candidate for the treatment of diseases associated with T cell activation. Further analysis showed that P2RY12 prevents HK2 degradation by activating the PI3K/Akt pathway and inhibiting lysosomal degradation. Our findings highlight the importance of the function of P2RY12 for HK2 stability and metabolism in the regulation of T cell activation and suggest that P2RY12 might be a pivotal regulator of T cell metabolism in ConA-induced immune hepatitis.


Asunto(s)
Hepatitis Autoinmune , Receptores Purinérgicos P2Y12 , Animales , Ratones , Glucólisis , Hexoquinasa/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Receptores Purinérgicos P2Y12/metabolismo , Linfocitos T/metabolismo
9.
Cell Death Dis ; 14(9): 608, 2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37709757

RESUMEN

Chemokines secreted by dendritic cells (DCs) play a key role in the regulation of inflammation and autoimmunity through chemokine receptors. However, the role of chemokine receptor CXCR1 in inflammation-inducing experimental autoimmune encephalomyelitis (EAE) and acute respiratory distress syndrome (ARDS) remains largely enigmatic. Here we reported that compared with healthy controls, the level of CXCR1 was aberrantly increased in multiple sclerosis (MS) patients. Knockout of CXCR1 not only ameliorated disease severity in EAE mice but also suppressed the secretion of inflammatory factors (IL-6/IL-12p70) production. We observed the same results in EAE mice with DCs-specific deletion of CXCR1 and antibody neutralization of the ligand CXCL5. Mechanically, we demonstrated a positive feedback loop composed of CXCL5/CXCR1/HIF-1α direct regulating of IL-6/IL-12p70 production in DCs. Meanwhile, we found CXCR1 deficiency in DCs limited IL-6/IL-12p70 production and lung injury in LPS-induced ARDS, a disease model caused by inflammation. Overall, our study reveals CXCR1 governs DCs-mediated inflammation and autoimmune disorders and its potential as a therapeutic target for related diseases.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Animales , Ratones , Ratones Noqueados , Encefalomielitis Autoinmune Experimental/genética , Interleucina-6 , Inflamación , Interleucina-12 , Receptores de Quimiocina , Receptores de Interleucina-8A/genética , Células Dendríticas
10.
Int Immunopharmacol ; 125(Pt A): 111110, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37883813

RESUMEN

Autoimmune hepatitis (AIH) is an inflammatory liver disease in which the autoimmune system instigates an attack on the liver, causing inflammation and liver injury, and its incidence has increased worldwide in recent years. The mouse model of acute hepatitis established by concanavalin A (Con A) is a typical and recognized mouse model for the study of T-cell-dependent liver injury. In this study, we aimed to investigate whether the artemisinin derivative TPN10475 could alleviate AIH and its possible mechanisms. TPN10475 effectively inhibited lymphocyte proliferation and IFN-γ+ T cells production in vitro, alleviated liver injury by decreasing infiltrating inflammatory T cells producing IFN-γ in the liver and peripheral immune tissues, and demonstrated that TPN10475 weakened the activation and function of T cells by inhibiting PI3K-AKT signaling pathway. These results suggested that TPN10475 may be a potential drug for the treatment of AIH, and the inhibition of PI3K-AKT signaling pathway may provide new ideas for the study of the pathogenesis of AIH.


Asunto(s)
Hepatitis Autoinmune , Animales , Ratones , Concanavalina A/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Hígado/patología , Linfocitos T
11.
Inflammation ; 45(3): 977-991, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34786625

RESUMEN

Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS), characterized by demyelinating neuropathy. The etiology of MS is not yet clear and its treatment remains a major medical challenge. While we search for drugs that can effectively treat experimental autoimmune encephalomyelitis (EAE), the animal model of MS, we also hope to further explore its possible pathogenesis. In the present study, we investigated whether methyl butyrate (MB) could alleviate EAE and its potential mechanisms. In EAE mice, we found that administration of MB was effective in alleviating their clinical signs and improving histopathological manifestations of the CNS. In the CNS and intestinal lamina propria, we observed fewer effector T cells, including Th1 and Th17, in the MB-treated group. MB also increased the proportion of regulatory T cells and the secretion of IL-10 in peripheral immune organs. In vitro, MB led to suppression of Th1 cells and promotion of regulatory T cells in their differentiation. Given that MB had no direct effect on Th17 cell differentiation in vitro, we hypothesized that MB suppressed Th17 cells indirectly by inhibiting the secretion of IL-6, which was later confirmed both in vitro and in vivo. In addition, we found that MB treatment upregulated Maf gene expression in mice, which explained its promotion of IL-10 secretion. The above findings suggest that MB may provide new ideas for the study of the mechanism of MS and have positive implications for new drug development.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Animales , Butiratos , Diferenciación Celular , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Interleucina-10/metabolismo , Ratones , Ratones Endogámicos C57BL , Linfocitos T Reguladores , Células TH1 , Células Th17
12.
J Vis Exp ; (187)2022 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-36155395

RESUMEN

Multiple sclerosis (MS) is a typical autoimmune disease of the central nervous system (CNS) characterized by inflammatory infiltration, demyelination, and axonal damage. Currently, there are no measures to cure MS completely, but multiple disease-modifying therapies (DMT) are available to control and mitigate disease progression. There are significant similarities between the CNS pathological features of experimental autoimmune encephalomyelitis (EAE) and MS patients. EAE has been widely used as a representative model to determine MS drugs' efficacy and explore the development of new therapies for MS disease. Active induction of EAE in mice has a stable and reproducible effect and is particularly suitable for studying the effects of drugs or genes on autoimmune neuroinflammation. The method of immunizing C57BL/6J mice with myelin oligodendrocyte glycoprotein (MOG35-55) and the daily assessment of disease symptoms using a clinical scoring system is mainly shared. Given the complex etiology of MS with diverse clinical manifestations, the existing clinical scoring system can't satisfy the assessment of disease treatment. To avoid the shortcomings of a single intervention, new indicators to assess EAE based on clinical manifestations of anxiety-like moods and osteoporosis in MS patients are created to provide a more comprehensive assessment of MS treatment.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Animales , Sistema Nervioso Central/patología , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple/patología , Glicoproteína Mielina-Oligodendrócito
13.
Int Immunopharmacol ; 101(Pt B): 108291, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34799286

RESUMEN

Multiple sclerosis (MS) is an inflammatory autoimmune disease of the central nervous system (CNS) mediated by immune cells. The pathogenesis of most autoimmune diseases has some degree of similarity to that of MS, and therefore the study of MS has clinical and scientific significance for other autoimmune diseases as well. As a widely used organic solvent, Methyl Acetate (MA) has a similar structure to acetate which has been shown to be therapeutic in the mouse model of multiple sclerosis. Here we found that MA was effective in reducing the disease severity of Experimental Autoimmune Encephalomyelitis (EAE). Pathological sections showed that MA reduced inflammatory cell infiltration in the CNS and attenuated demyelination in the spinal cord. MA increases the proportion of Th1 cells in the periphery of EAE mice. Further mechanistic studies have demonstrated that MA treatment induces Th1 retention in the peripheral immune system by increasing the expression levels of peripheral Th1-related chemokines CXCR3. CXCL9, CXCL10. In addition, we observed that MA alleviated intestinal inflammation in EAE mice. The data showed that this phenomenon is achieved by enhancing IL-10 and inhibiting IL-6 secretion. Our data indicates that MA might have therapeutic implications for autoimmune diseases such as MS.


Asunto(s)
Encefalomielitis Autoinmune Experimental/inmunología , Acetatos/uso terapéutico , Animales , Sistema Nervioso Central/inmunología , Modelos Animales de Enfermedad , Inflamación/inmunología , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple/inmunología , Receptores CXCR3 , Médula Espinal/patología , Células TH1/inmunología , Células Th17/inmunología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda