Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Int J Pharm ; 622: 121841, 2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35623486

RESUMEN

Several antithrombotic drugs are available to treat cardiovascular diseases due to its high mortality and morbidity worldwide. Despite these, severe adverse effects that can lead to treatment withdrawal have been described, highlighting the importance of new therapies. Thus, this work describes the development of fucoidan microparticles containing acetylsalicylic acid (MP/F4M) for pulmonary delivery and in vitro, ex vivo, and in vivo evaluation. Microparticles were prepared via spray-drying and characterized in vitro (mucoadhesive properties, coagulation time, platelet aggregation, adhesion, and hemolysis) followed by ex vivo platelet aggregation, in vivo arterial thrombosis, and hemorrhagic profile. The formulation physicochemical characterization showed suitable characteristics along with delayed drug release, increased breathable particle fraction, and high washability resistance as well as antiplatelet activity and enhanced platelet adhesion in vitro. In in vivo assays, MP/F4M protected against arterial thrombosis, without changes in the hemorrhagic profile. Finally, no lung changes were observed after prolonged pulmonary administration, whereas isolated ASA led to an inflammatory response. In conclusion, pulmonary administration of fucoidan microparticles with an antiplatelet drug may be an alternative therapy to treat cardiovascular diseases, opening the field for different formulations.


Asunto(s)
Enfermedades Cardiovasculares , Trombosis , Aspirina , Humanos , Inhibidores de Agregación Plaquetaria/farmacología , Polisacáridos , Trombosis/tratamiento farmacológico
2.
Thromb Res ; 206: 42-51, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34403851

RESUMEN

BACKGROUND: Prostate cancer (PCa) may be initiated by CD133+/CD44+ expressing stem cell-like cells (PCSC), which are also thought to drive metastasis. Platelets also contribute to metastasis via tumor cell-induced platelet aggregation (TCIPA), which in part enhances cancer cell invasion. Moreover, activated platelets secrete stromal derived growth factor-1α (SDF-1α) that can mobilize CSCs via the CXCR4 receptor. However, the potential reciprocal interactions between CSCs and platelets have not been investigated. OBJECTIVE: To characterize the mechanisms behind PCSC-platelet interaction. METHODS: Fluorescence Activated Cell Sorting was utilized to separate DU145 and PC3 PCa cells into CD133+/CD44+, CD133+/CD44-, CD44+/CD133-, and CD133-/CD44- subpopulations and to measure their CXCR4 surface expression. PCa subpopulation TCIPA experiments were performed using aggregometry and immunoblot was used to measure prothrombin. Platelet SDF-1α secretion was measured by ELISA. Modified-Boyden chamber assays were used to assess the role of SDF-1α:CXCR4 pathway in platelet-PCSC interactions. RESULTS: DU145 and PC3 expressing both CD133 and CD44 stem cell markers accounted for only small fractions of total cells (DU145: CD133+/CD44+ 3.44 ± 1.45% vs. CD133+/CD44- 1.56 ± 0.45% vs. CD44+/CD133- 68.19 ± 6.25% vs. CD133-/CD44- 20.36 ± 4.51%). However, CD133+ subpopulations induced the greatest amount of aggregation compared to CD44+/CD133- and double-negative DU145, and this aggregation potency of CD133+ PCa cells corresponded with high levels of prothrombin expression. Additionally, CD133+ subpopulations expressed significantly higher level of CXCR4 compared to CD133-/CD44- and CD44+/CD133-. Disruption of SDF-1α:CXCR4 pathway reduced platelet-induced PCSC invasion. CONCLUSIONS: CD133+/CD44+ and CD133+/CD44- PCSCs have highest platelet aggregation potency, which could be attributed to their increased prothrombin expression. Reciprocally, platelet-derived SDF-1α stimulates PCSC invasion.


Asunto(s)
Plaquetas , Neoplasias de la Próstata , Línea Celular Tumoral , Quimiocina CXCL12 , Humanos , Masculino , Células Madre Neoplásicas , Receptores CXCR4
3.
Eur J Med Chem ; 135: 213-229, 2017 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-28453995

RESUMEN

Cardiovascular diseases (CVDs) account for over 17 million deaths globally each year, with atherosclerosis as the underlying cause of most CVDs. Herein we describe the synthesis and in vitro mechanistic evaluation of novel N'-benzylidene-carbohydrazide-1H-pyrazolo[3,4-b]pyridines (3-22) designed as non-anionic antiplatelet agents and presenting a 30-fold increase in potency compared to aspirin. The mechanism underlying their antiplatelet activity was elucidated by eliminating potential targets through a series of in vitro assays including light transmission aggregometry, clot retraction, and quantitative ELISA, further identifying the reduction in biosynthesis of thromboxane B2 as their main mechanism of action. The intrinsic fluorescence of the compounds permits their binding to platelet membranes to be readily monitored. In silico structure-activity relationship, molecular docking and dynamics studies support the biological profile of the series revealing the molecular basis of their activity and their potential as future molecular therapeutic agents.


Asunto(s)
Compuestos de Bencilideno/farmacología , Plaquetas/efectos de los fármacos , Hidrazinas/farmacología , Inhibidores de Agregación Plaquetaria/farmacología , Pirazoles/farmacología , Piridinas/farmacología , Compuestos de Bencilideno/química , Relación Dosis-Respuesta a Droga , Humanos , Hidrazinas/química , Simulación del Acoplamiento Molecular , Estructura Molecular , Inhibidores de Agregación Plaquetaria/síntesis química , Inhibidores de Agregación Plaquetaria/química , Pirazoles/química , Piridinas/química , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda