Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
2.
Nature ; 583(7816): 400-405, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32669695

RESUMEN

Mechanical interlocking of molecules (catenation) is a nontrivial challenge in modern synthetic chemistry and materials science1,2. One strategy to achieve catenation is the design of pre-annular molecules that are capable of both efficient cyclization and of pre-organizing another precursor to engage in subsequent interlocking3-9. This task is particularly difficult when the annular target is composed of a large ensemble of molecules, that is, when it is a supramolecular assembly. However, the construction of such unprecedented assemblies would enable the visualization of nontrivial nanotopologies through microscopy techniques, which would not only satisfy academic curiosity but also pave the way to the development of materials with nanotopology-derived properties. Here we report the synthesis of such a nanotopology using fibrous supramolecular assemblies with intrinsic curvature. Using a solvent-mixing strategy, we kinetically organized a molecule that can elongate into toroids with a radius of about 13 nanometres. Atomic force microscopy on the resulting nanoscale toroids revealed a high percentage of catenation, which is sufficient to yield 'nanolympiadane'10, a nanoscale catenane composed of five interlocked toroids. Spectroscopic and theoretical studies suggested that this unusually high degree of catenation stems from the secondary nucleation of the precursor molecules around the toroids. By modifying the self-assembly protocol to promote ring closure and secondary nucleation, a maximum catenation number of 22 was confirmed by atomic force microscopy.

3.
J Am Chem Soc ; 145(1): 443-454, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36574732

RESUMEN

The amplification of molecular asymmetry through self-assembly is a phenomenon that not only comprehends the origin of homochirality in nature but also produces chiroptically active functional materials from molecules with minimal enantiomeric purity. Understanding how molecular asymmetry can be transferred and amplified into higher-order structures in a hierarchical self-assembly system is important but still unexplored. Herein, we present an intriguing example of the amplification of molecular asymmetry in hierarchically self-assembled nanotubes that feature discrete and isolatable toroidal intermediates. The hierarchical self-assembly is initiated via asymmetric intramolecular folding of scissor-shaped azobenzene dyads furnished with chiral side chains. When scalemic mixtures of the enantiomers are dissolved in a non-polar solvent and cooled to 20 °C, single-handed nanotoroids are formed, as confirmed using atomic force microscopy and circular dichroism analyses. A strong majority-rules effect at the nanotoroid level is observed and can be explained by a low mismatch penalty and a high helix-reversal penalty. The single-handed nanotoroids stack upon cooling to 0 °C to exclusively afford their respective single-handed nanotubes. Thus, the same degree of amplification of molecular asymmetry is realized at the nanotube level. The internal packing efficiency of molecules within nanotubes prepared from the pure enantiomers or their scalemic mixtures is likely different, as suggested by the absence of higher-order structure (supercoil) formation in the latter. X-ray diffraction analysis of the anisotropically oriented nanotube films revealed looser molecular packing within the scalemic nanotubes, which clearly reflects the lower enantiomeric purity of their internal chiral side chains.


Asunto(s)
Nanotubos , Nanotubos/química , Compuestos Azo , Cristalografía por Rayos X , Estereoisomerismo
4.
J Am Chem Soc ; 145(41): 22563-22576, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37796243

RESUMEN

Polymorphism, a phenomenon whereby disparate self-assembled products can be formed from identical molecules, has incited interest in the field of supramolecular polymers. Conventionally, the monomers that constitute supramolecular polymers are engineered to facilitate one-dimensional aggregation and, consequently, their polymorphism surfaces primarily when the states of assembly differ significantly. This engenders polymorphs of divergent dimensionalities such as one- and two-dimensional aggregates. Notwithstanding, realizing supramolecular polymer polymorphism, wherein polymorphs maintain one-dimensional aggregation, persists as a daunting challenge. In this work, we expound upon the manifestation of two supramolecular polymer polymorphs formed from a large discotic supramolecular monomer (rosette), which consists of six hydrogen-bonded molecules with an extended π-conjugated core. These polymorphs are generated in mixtures of chloroform and methylcyclohexane, attributable to distinctly different disc stacking arrangements. The face-to-face (minimal displacement) and offset (large displacement) stacking arrangements can be predicated on their distinctive photophysical properties. The face-to-face stacking results in a twisted helix structure. Conversely, the offset stacking induces inherent curvature in the supramolecular fiber, thereby culminating in a hollow helical coil (helicoid). While both polymorphs exhibit bistability in nonpolar solvent compositions, the face-to-face stacking attains stability purely in a kinetic sense within a polar solvent composition and undergoes conversion into offset stacking through a dislocation of stacked rosettes. This occurs without the dissociation and nucleation of monomers, leading to unprecedented helicoidal folding of supramolecular polymers. Our findings augment our understanding of supramolecular polymer polymorphism, but they also highlight a distinctive method for achieving helicoidal folding in supramolecular polymers.

5.
Chem Rec ; 22(2): e202100252, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34669237

RESUMEN

Unique relationships between hierarchically organized biological nanostructures and functions have motivated chemists to construct sophisticated artificial nanostructured systems from small and simple synthetic molecules through self-assembly. As one of such sophisticated systems, we have investigated scissor-shaped photochromic dyads that can hierarchically self-assemble into discrete nanostructures showing photoresponsive properties. We synthesized various azobenzene dyads and found that these dyads adopt intramolecularly folded conformation like a closed scissor, and then self-assemble into toroidal nanostructures by generating curvature. The toroids further organize into nanotubes and further into helical supramolecular fibers depending on the nature of alkyl substituents. All of these nanostructures can be dissociated and reorganized through the photoisomerization of azobenzene units. On the other hand, the introduction of stilbene chromophores instead of azobenzenes leads to one-dimensional supramolecular polymerization, which upon the intramolecular photocyclization of stilbene chromophores shifts to curved self-assembly leading to helicoidal fibers with distinct supramolecular chirality.


Asunto(s)
Nanoestructuras , Conformación Molecular , Nanoestructuras/química , Polimerizacion
6.
Angew Chem Int Ed Engl ; 61(5): e202114290, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-34822210

RESUMEN

Hierarchical organization of self-assembled structures into superstructures is omnipresent in Nature but has been rarely achieved in synthetic molecular assembly due to the absence of clear structural rules. We herein report on the self-assembly of scissor-shaped azobenzene dyads which form discrete nanotoroids that further organize into 2D porous networks. The steric demand of the peripheral aliphatic units diminishes the trend of the azobenzene dyad to constitute stackable nanotoroids in solution, thus affording isolated (unstackable) nanotoroids upon cooling. Upon drying, these nanotoroids organize at graphite surface to form well-defined 2D porous networks. The photoirradiation with UV and visible light enabled reversible dissociation and reconstruction of nanotoroids through the efficient trans↔cis isomerization of azobenzene moieties in solution.

8.
Org Biomol Chem ; 18(21): 3996-3999, 2020 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-32412566

RESUMEN

Inversion of the connectivity of amide groups in foldable azobenzene dyads with chiral side chains, which can self-assemble into toroids and nanotubes, significantly increases the thermal stability of these aggregates. The results can be explained by the geometrical difference of the amide groups. On the other hand, the side chain chirality is disregarded because the chiral centers are distant from the amide groups.

9.
Chem Sci ; 13(11): 3249-3255, 2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35414866

RESUMEN

Recent advances in the research field of supramolecularly engineered dye aggregates have enabled the design of simple one-dimensional stacks such as fibers and of closed structures such as nanotoroids (nanorings). More complex and advanced supramolecular systems could potentially be designed using a molecule that is able to provide either of these distinct nanostructures under different conditions. In this study, we introduced bulky but strongly aggregating cholesterol units to a scissor-shaped azobenzene dyad framework, which affords either nanotoroids, nanotubes, or 1D fibers, depending on the substituents. This new dyad with two trans-azobenzene arms shows supramolecular polymorphism in its temperature-controlled self-assembly, leading to not only oligomeric nanotoroids as kinetic products, but also to one-dimensional fibers as thermodynamic products. This supramolecular polymorphism can also be achieved via photo-triggered self-assembly, i.e., irradiation of a monomeric solution of the dyad with two cis-azobenzene arms using strong visible light leads to the preferential formation of nanotoroids, whereas irradiation with weak visible light leads to the predominant formation of 1D fibers. This is the first example of a successful light-induced modulation of supramolecular polymorphism to produce distinctly nanostructured aggregates under isothermal conditions.

10.
Chem Commun (Camb) ; 56(100): 15619-15622, 2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-33290500

RESUMEN

Scissor-shaped azobenzene dyads possessing alkyl side chains can hierarchically self-assemble through a folded conformation into toroidal and tubular nanostructures. We found that the introduction of perfluoroalkyl side chains transforms the assembly pathway into direct one-dimensional stacking of the folded conformer, resulting in the formation of gel-forming supramolecular fibers that can reversibly dissociate and reassemble on exposure to light.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda