Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
Environ Res ; 260: 119622, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39019141

RESUMEN

Rapid urbanization worldwide, poses numerous environmental challenges between escalating land use land cover (LULC) changes and groundwater quality dynamics. The main objective of this study was to investigate the dynamics of groundwater quality and LULC changes in Sargodha district, Punjab, Pakistan. Groundwater hydrochemistry reveals acceptable pH levels (<8) but total dissolved solids (TDS), electrical conductivity (EC) and HCO3- showed dynamic fluctuations by exceeding WHO limits. Piper diagrams, indicated dominance by magnesium and bicarbonate types, underscoring the influence of natural processes and anthropogenic activities. Major ion relationships in 2010, 2015, and 2021 showed a high correlation (R2 > 0.85) between Na+ and Cl-, suggesting salinization. whereas, the poor correlation (<0.17) between Ca2+ and HCO3- does not support calcite dissolution as the primary process affecting groundwater composition. The examination of nitrate contamination in groundwater across the years 2010, 2015, and 2021 was found to be high in the municipal sewage zone, suggesting a prevailing issue of nitrate contamination attributed to urban activities. The Nitrate Pollution Index (NPI) reveals a concerning trend, with a higher proportion of samples classified under moderate to high pollution categories in 2015 and 2021 compared to 2010. The qualitative assessment of nitrate concentration on spatiotemporal scale showed lower values in 2010 while a consistent rise from 2015 to 2021 in north-east and western parts of district. Likewise, NPI was high in the north-eastern and south-western regions in 2010, then reduced in subsequent years, which may be attributed to effective waste management practices and alterations in agricultural practices. The health risk assessment of 2010 indicated Total Health Hazard Quotient (THQ) within the standard limit, while in 2015 and 2021, elevated health risk was observed. This study emphasizes the need to use multiple approaches to groundwater management for sustainable land use planning and regulations that prioritize groundwater quality conservation.


Asunto(s)
Monitoreo del Ambiente , Agua Subterránea , Urbanización , Contaminantes Químicos del Agua , Calidad del Agua , Agua Subterránea/química , Agua Subterránea/análisis , Pakistán , Contaminantes Químicos del Agua/análisis , Nitratos/análisis
2.
Environ Monit Assess ; 194(6): 409, 2022 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-35524889

RESUMEN

Land use/land cover (LULC) changes due to urban growth on the regional scale affect land surface temperature (LST). The present study aims to assess the LULC changes and their impact on LST over Mardan and Charsadda districts of Khyber Pakhtunkhwa (KP), Pakistan, in the period from 1990 to 2019. Landsat satellite (TM& ETM +) datasets in the period from 1990 to 2010 and Sentinel-2 images from 2016 to 2019 were used in this study. All the datasets were pre-processed and the LULC types were classified by maximum likelihood classification algorithm. The vegetation degradation was computed from normalized difference vegetation index (NDVI), and the LST was derived based on the LULC changes. The results showed that the overall accuracy of LULC classification was 87.84%. Dramatic LULC changes were observed during the last three decades, where the vegetation degradation area was decreased from 1307.8 (59.27%) to 1147.6 km2 (52.1%) and the barren land area increased from 816.6 (37.07%) to 961.4 km2 (42.64%). Similarly, the built-up area has also increased from 57.2 (2.5%) to 104.3 km2 (4.73%) in the years 1990 and 2019, respectively. These variations in LULC types have significantly influenced the LST from 1990 to 2019; specifically, the LST of built-up area, barren land, and vegetation cover increased from 20.1 to 32.1 °C, 21.5 to 35.5 °C, and 17.1 to 28.2 °C, respectively. The regression line plotted defines that the LST has a negative correlation with NDVI and a positive correlation with normalized difference of built-up index (NDBI). In particular, the vegetation and land covers dramatically transformed to barren land and/or to urban development over the study area in the period from 1990 to2019, which has severely affected the LST and the natural resources of the study area. Therefore, our study will be very helpful for managing the rapid environmental changes and urban planning.


Asunto(s)
Monitoreo del Ambiente , Remodelación Urbana , Monitoreo del Ambiente/métodos , Pakistán , Temperatura , Urbanización
3.
Environ Sci Pollut Res Int ; 31(38): 50874-50891, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39103583

RESUMEN

Conventional geodetic methods rely on point measurements, which have drawbacks for detecting and tracking geologic disasters at specific locations. In this study, the time series Interferometric Synthetic Aperture Radar (InSAR) approach was incorporated to estimate non-linear surface deformation caused by tectonic, shoreline reclamation, and other anthropogenic activities in economically important urban regions of Pakistan's southern coast, which possesses around 270 km. The shoreline is extended from the low-populated area on the premises of the Hub River in the west to the highly populated Karachi City and Eastern Industrial Zone, where we collected the Sentinel-1A C-band data from 2017 to 2023 to address urban security and threats to human life and property. The main advantage of opting for the non-linear persistent scatterer interferometric SAR (PSInSAR) approach for this study is that it exposes minute movements without any prior consideration of conventional monitoring techniques, making it valid in continuously varying regions. An average vertical displacement range of - 170 to + 82 mm per year was found, which was used to investigate the potential correlation with the most effective causative parameters of deformation. The densely populated areas of the study area experience an annual subsidence of 170 mm, and the less populated western region experiences an uplift of 82 mm annually. Land deformation varies along the coast of the study area, where the eastern region is highly reclaimed and is affected by erosion. Groundwater table-depleting regions experienced high levels of land subsidence, and tectonic activities controlled vertical displacement in the region. Major variation was detected after an earthquake occurred along fault lines. This study was designed because a non-linear approach is required to address ground movement activities acutely, and it will make it possible to plan surface infrastructure and handle issues brought on by subsidence more effectively.


Asunto(s)
Monitoreo del Ambiente , Pakistán , Monitoreo del Ambiente/métodos , Radar , Humanos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda