Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 232
Filtrar
1.
Cell ; 184(14): 3643-3659.e23, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34166613

RESUMEN

Vesicle-inducing protein in plastids 1 (VIPP1) is essential for the biogenesis and maintenance of thylakoid membranes, which transform light into life. However, it is unknown how VIPP1 performs its vital membrane-remodeling functions. Here, we use cryo-electron microscopy to determine structures of cyanobacterial VIPP1 rings, revealing how VIPP1 monomers flex and interweave to form basket-like assemblies of different symmetries. Three VIPP1 monomers together coordinate a non-canonical nucleotide binding pocket on one end of the ring. Inside the ring's lumen, amphipathic helices from each monomer align to form large hydrophobic columns, enabling VIPP1 to bind and curve membranes. In vivo mutations in these hydrophobic surfaces cause extreme thylakoid swelling under high light, indicating an essential role of VIPP1 lipid binding in resisting stress-induced damage. Using cryo-correlative light and electron microscopy (cryo-CLEM), we observe oligomeric VIPP1 coats encapsulating membrane tubules within the Chlamydomonas chloroplast. Our work provides a structural foundation for understanding how VIPP1 directs thylakoid biogenesis and maintenance.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Chlamydomonas/metabolismo , Multimerización de Proteína , Synechocystis/metabolismo , Tilacoides/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/ultraestructura , Sitios de Unión , Membrana Celular/metabolismo , Chlamydomonas/ultraestructura , Microscopía por Crioelectrón , Proteínas Fluorescentes Verdes/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Luz , Lípidos/química , Modelos Moleculares , Nucleótidos/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Estrés Fisiológico/efectos de la radiación , Synechocystis/ultraestructura , Tilacoides/ultraestructura
2.
Trends Genet ; 39(5): 342-343, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36935219

RESUMEN

Organelle DNAs (orgDNAs) in mitochondria and plastids are generally inherited from the maternal parent; however, it is unclear how their inheritance mode is controlled, particularly in the plastids of seed plants. Chung et al. identify two factors that affect maternal inheritance in tobacco plastids: cold temperature and DNA amount in pollen.


Asunto(s)
Herencia Materna , Plastidios , Herencia Materna/genética , Plastidios/genética , Mitocondrias/genética , ADN , Patrón de Herencia
3.
Plant Mol Biol ; 114(3): 71, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38856917

RESUMEN

Mitochondria and plastids, originated as ancestral endosymbiotic bacteria, contain their own DNA sequences. These organelle DNAs (orgDNAs) are, despite the limited genetic information they contain, an indispensable part of the genetic systems but exist as multiple copies, making up a substantial amount of total cellular DNA. Given this abundance, orgDNA is known to undergo tissue-specific degradation in plants. Previous studies have shown that the exonuclease DPD1, conserved among seed plants, degrades orgDNAs during pollen maturation and leaf senescence in Arabidopsis. However, tissue-specific orgDNA degradation was shown to differ among species. To extend our knowledge, we characterized DPD1 in rice in this study. We created a genome-edited (GE) mutant in which OsDPD1 and OsDPD1-like were inactivated. Characterization of this GE plant demonstrated that DPD1 was involved in pollen orgDNA degradation, whereas it had no significant effect on orgDNA degradation during leaf senescence. Comparison of transcriptomes from wild-type and GE plants with different phosphate supply levels indicated that orgDNA had little impact on the phosphate starvation response, but instead had a global impact in plant growth. In fact, the GE plant showed lower fitness with reduced grain filling rate and grain weight in natural light conditions. Taken together, the presented data reinforce the important physiological roles of orgDNA degradation mediated by DPD1.


Asunto(s)
Oryza , Oryza/genética , Oryza/metabolismo , Oryza/enzimología , Oryza/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Exonucleasas/metabolismo , Exonucleasas/genética , Edición Génica , Regulación de la Expresión Génica de las Plantas , ADN de Plantas/genética , ADN de Plantas/metabolismo , Polen/genética , Polen/metabolismo , Polen/crecimiento & desarrollo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Genoma de Planta , Mutación
4.
Plant Physiol ; 193(4): 2498-2512, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37606239

RESUMEN

Plants cope with sudden increases in light intensity through various photoprotective mechanisms. Redox regulation by thioredoxin (Trx) systems also contributes to this process. Whereas the functions of f- and m-type Trxs in response to such fluctuating light conditions have been extensively investigated, those of x- and y-type Trxs are largely unknown. Here, we analyzed the trx x single, trx y1 trx y2 double, and trx x trx y1 trx y2 triple mutants in Arabidopsis (Arabidopsis thaliana). A detailed analysis of photosynthesis revealed changes in photosystem I (PSI) parameters under low light in trx x and trx x trx y1 trx y2. The electron acceptor side of PSI was more reduced in these mutants than in the wild type. This mutant phenotype was more pronounced under fluctuating light conditions. During both low- and high-light phases, the PSI acceptor side was largely limited in trx x and trx x trx y1 trx y2. After fluctuating light treatment, we observed more severe PSI photoinhibition in trx x and trx x trx y1 trx y2 than in the wild type. Furthermore, when grown under fluctuating light conditions, trx x and trx x trx y1 trx y2 plants showed impaired growth and decreased level of PSI subunits. These results suggest that Trx x and Trx y prevent redox imbalance on the PSI acceptor side, which is required to protect PSI from photoinhibition, especially under fluctuating light. We also propose that Trx x and Trx y contribute to maintaining the redox balance even under constant low-light conditions to prepare for sudden increases in light intensity.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Complejo de Proteína del Fotosistema I/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Oxidación-Reducción , Fotosíntesis , Arabidopsis/fisiología , Luz , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
5.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38731846

RESUMEN

Activated TGFß signaling in the tumor microenvironment, which occurs independently of epithelial cancer cells, has emerged as a key driver of tumor progression in late-stage colorectal cancer (CRC). This study aimed to elucidate the contribution of TGFß-activated stroma to serrated carcinogenesis, representing approximately 25% of CRCs and often characterized by oncogenic BRAF mutations. We used a transcriptional signature developed based on TGFß-responsive, stroma-specific genes to infer TGFß-dependent stromal activation and conducted in silico analyses in 3 single-cell RNA-seq datasets from a total of 39 CRC samples and 12 bulk transcriptomic datasets consisting of 2014 CRC and 416 precursor samples, of which 33 were serrated lesions. Single-cell analyses validated that the signature was expressed specifically by stromal cells, effectively excluding transcriptional signals derived from epithelial cells. We found that the signature was upregulated during malignant transformation and cancer progression, and it was particularly enriched in CRCs with mutant BRAF compared to wild-type counterparts. Furthermore, across four independent precursor datasets, serrated lesions exhibited significantly higher levels of TGFß-responsive stromal activation compared to conventional adenomas. This large-scale analysis suggests that TGFß-dependent stromal activation occurs early in serrated carcinogenesis. Our study provides novel insights into the molecular mechanisms underlying CRC development via the serrated pathway.


Asunto(s)
Neoplasias Colorrectales , Regulación Neoplásica de la Expresión Génica , Células del Estroma , Factor de Crecimiento Transformador beta , Humanos , Adenoma/genética , Adenoma/patología , Adenoma/metabolismo , Carcinogénesis/genética , Carcinogénesis/patología , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Perfilación de la Expresión Génica , Mutación , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Transducción de Señal , Análisis de la Célula Individual , Células del Estroma/metabolismo , Células del Estroma/patología , Transcriptoma , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/genética , Microambiente Tumoral/genética
6.
Esophagus ; 21(2): 165-175, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38324215

RESUMEN

BACKGROUND: Chemotherapy has the potential to induce CD8+ T-cell infiltration in the tumor microenvironment (TME) and activate the anti-tumor immune response in several cancers including esophageal squamous cell carcinoma (ESCC). The tumor cell-intrinsic cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway has been known as a critical component for regulating immune cell activation in the TME. However, its effect on the infiltration of immune cells induced by chemotherapy in the ESCC TME has not been investigated. METHODS: We examined the effect of the tumor-cell intrinsic cGAS-STING pathway on the infiltration of CD8+ T cells induced by chemotherapy in ESCC using ESCC cell lines and surgically resected ESCC specimens from patients who received neoadjuvant chemotherapy (NAC). RESULTS: We found that chemotherapeutic agents, including 5-fluorouracil (5-FU) and cisplatin (CDDP), activated the cGAS-STING pathway, consequently inducing the expression of type I interferon and T-cell-attracting chemokines in ESCC cells. Moreover, the tumor cell-intrinsic expression of cGAS-STING was significantly and positively associated with the density of CD8+ T cells in ESCC after NAC. However, the tumor cell-intrinsic expression of cGAS-STING did not significantly impact clinical outcomes in patients with ESCC after NAC. CONCLUSION: Our findings suggest that the tumor cell-intrinsic cGAS-STING pathway might contribute to chemotherapy-induced immune cell activation in the ESCC TME.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Interferón Tipo I , Humanos , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Linfocitos T CD8-positivos , Neoplasias Esofágicas/tratamiento farmacológico , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Nucleotidiltransferasas/uso terapéutico , Interferón Tipo I/genética , Interferón Tipo I/metabolismo , Interferón Tipo I/uso terapéutico , Fluorouracilo/farmacología , Fluorouracilo/uso terapéutico , Cisplatino/farmacología , Cisplatino/uso terapéutico , Microambiente Tumoral
7.
Plant Cell Physiol ; 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37702423

RESUMEN

Plastids are essential organelles in angiosperms and show non-Mendelian inheritance due to their evolution as endosymbionts. In approximately 80% of angiosperms, plastids are thought to be inherited from the maternal parent, whereas other species transmit plastids biparentally. Maternal inheritance can be generally explained by the stochastic segregation of maternal plastids after fertilization because the zygote is overwhelmed by the maternal cytoplasm. In contrast, biparental inheritance shows transmission of organelles from both parents. In some species, maternal inheritance is not absolute and paternal leakage occurs at a very low frequency (~10-5). A key process controlling the inheritance mode lies in the behavior of plastids during male gametophyte (pollen) development, with accumulating evidence indicating that the plastids themselves or their DNAs are eliminated during pollen maturation or at fertilization. Cytological observations in numerous angiosperm species have revealed several critical steps that mutually influence the degree of plastid transmission quantitatively among different species. This review revisits plastid inheritance and focuses on the mechanistic viewpoint. Particularly, we focus on a recent finding demonstrating that both low temperature and plastid DNA degradation mediated by the organelle exonuclease DPD1 influence the degree of paternal leakage significantly in tobacco. Given these findings, we also highlight the emerging role of DPD1 in organelle DNA degradation.

8.
Cancer Immunol Immunother ; 72(7): 2233-2244, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36869896

RESUMEN

M2 tumor-associated macrophages (M2-TAMs) promote cancer cell proliferation and metastasis in the TME. Our study aimed to elucidate the mechanism of increased frequency of M2-TAMs infiltration in the colorectal cancer (CRC)-TME, focusing on the resistance to oxidative stress through nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. In this study, we evaluated the correlation between M2-TAM signature and mRNA expression of antioxidant related genes using public datasets, and the expression level of antioxidants in M2-TAMs by flow cytometry and the prevalence of M2-TAMs expressing antioxidants by immunofluorescence staining using surgically resected specimens of CRC (n = 34). Moreover, we generated M0 and M2 macrophages from peripheral blood monocytes and evaluated their resistance to oxidative stress using the in vitro viability assay. Analysis of GSE33113, GSE39582, and The Cancer Genome Atlas (TCGA) datasets indicated that mRNA expression of HMOX1 (heme oxygenase-1 (HO-1)) was significantly positively correlated with M2-TAM signature (r = 0.5283, r = 0.5826, r = 0.5833, respectively). The expression level of both Nrf2 and HO-1 significantly increased in M2-TAMs compared to M1- and M1/M2-TAMs in the tumor margin, and the number of Nrf2+ or HO-1+M2-TAMs in the tumor stroma significantly increased more than those in the normal mucosa stroma. Finally, generated M2 macrophages expressing HO-1 significantly resisted to oxidative stress induced by H2O2 in comparison with generated M0 macrophages. Taken together, our results suggested that an increased frequency of M2-TAMs infiltration in the CRC-TME is related to Nrf2-HO-1 axis mediated resistance to oxidative stress.


Asunto(s)
Neoplasias Colorrectales , Macrófagos Asociados a Tumores , Humanos , Macrófagos Asociados a Tumores/metabolismo , Antioxidantes/metabolismo , Peróxido de Hidrógeno , Microambiente Tumoral , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Factor 2 Relacionado con NF-E2/genética , Estrés Oxidativo , Neoplasias Colorrectales/patología , ARN Mensajero/metabolismo
9.
Plant Physiol ; 189(1): 419-432, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35348770

RESUMEN

Chlorophyll (Chl) serves a number of essential functions, capturing and converting light energy as a component of photosystem supercomplexes. Chl degradation during leaf senescence is also required for adequate degeneration of chloroplasts and salvaging of nutrients from senescent leaves. In this study, we performed genetic analysis to determine the functions of BALANCE of CHLOROPHYLL METABOLISM1 (BCM1) and BCM2, which control Chl levels by regulating synthesis and degradation, and STAY-GREEN (SGR)1 (also known as NON-YELLOWING1 [NYE1]) and SGR2, which encode Mg-dechelatase and catalyze Chl a degradation in Arabidopsis (Arabidopsis thaliana). Analysis of bcm1 bcm2 revealed that both BCM1 and BCM2 are involved in the regulation of Chl levels in presenescent leaves and Chl degradation in senescing leaves. Analysis of bcm1 bcm2 nye1 nye2 suggested that BCMs repress Chl-degrading activity in both presenescent and senescing leaves by regulating SGR activity. Furthermore, transactivation analysis and chromatin immunoprecipitation (ChIP) assay revealed that GOLDEN2-LIKE1 (GLK1), a central transcription factor regulating the expression of genes encoding photosystem-related proteins, such as light-harvesting Chl a/b-binding proteins (LHCPs), directly regulates the transcription of BCM1. LHCPs are stabilized by Chl binding, suggesting that GLKs control the amount of LHCP through transcriptional and post-translational regulation via BCM-mediated Chl-level regulation. Meanwhile, we generated a mutant of the BCM ortholog in lettuce (Lactuca sativa) by genome editing and found that it showed an early yellowing phenotype, but only a slight reduction in Chl in presenescent leaves. Thus, this study revealed a conserved but slightly diversified regulation of Chl and LHCP levels via the GLK-BCM pathway in eudicots.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Clorofila/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Regulación de la Expresión Génica de las Plantas , Complejos de Proteína Captadores de Luz/genética , Complejos de Proteína Captadores de Luz/metabolismo , Hojas de la Planta/metabolismo , Factores de Transcripción/metabolismo
10.
Gastric Cancer ; 26(3): 379-392, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36811690

RESUMEN

BACKGROUND: The PI3K/AKT signaling pathway is frequently activated in gastric cancer (GC); however, AKT inhibitors are not effective in unselected GC patients in clinical trials. Mutations in AT-rich interactive domain 1A (ARID1A), which are found in approximately 30% of GC patients, activate PI3K/AKT signaling, suggesting that targeting the ARID1A deficiency-activated PI3K/AKT pathway is a therapeutic candidate for ARID1A-deficient GC. METHODS: The effect of AKT inhibitors was evaluated using cell viability and colony formation assays in ARID1A-deficient and ARID1A knockdown ARID1A-WT GC cells as well as in HER2-positive and HER2-negative GC. The Cancer Genome Atlas cBioPortal and Gene Expression Omnibus microarray databases were accessed to determine the extent of dependence of GC cell growth on the PI3K/AKT signaling pathway. RESULTS: AKT inhibitors decreased the viability of ARID1A-deficient cells and the inhibitory effect was greater in ARID1A-deficient/HER2-negative GC cells. Bioinformatics data suggested that PI3K/AKT signaling plays a greater role in proliferation and survival in ARID1A-deficient/HER2-negative GC cells than in ARID1A-deficient/HER2-positive cells, supporting the higher therapeutic efficacy of AKT inhibitors. CONCLUSIONS: The effect of AKT inhibitors on cell proliferation and survival is affected by HER2 status, providing a rationale for exploring targeted therapy using AKT inhibitors in ARID1A-deficient/HER2-negative GC.


Asunto(s)
Neoplasias Gástricas , Factores de Transcripción , Humanos , Factores de Transcripción/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Inhibidores de Proteínas Quinasas/farmacología , Línea Celular Tumoral , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo
11.
Gastric Cancer ; 26(6): 878-890, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37542528

RESUMEN

BACKGROUND: HER2 signaling might be involved in the regulation of immune cell activation in the tumor microenvironment (TME) of gastric cancer (GC). However, the relationship between HER2 status and immune cell condition in the HER2-positive GC TME is not clearly understood. METHODS: To investigate the effect of HER2 signaling on the activation of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway, which contributes to immune cell activation in the GC TME, we evaluated the associations among the expressions of HER2, cGAS-STING, and the number of CD8+ tumor-infiltrating lymphocytes (TIL) by considering HER2 heterogeneity in HER2-positive GC tissues. We also examined the effect of HER2 signaling on the activation of STING signaling in vitro using human HER2-positive GC cell lines. RESULTS: The expression of HER2 is highly heterogeneous in HER2-positive GC tissues, and we found that the number of CD8+ TIL in HER2 high areas was significantly lower than that in HER2 low areas in HER2-positive GC tissues. Intriguingly, the tumor cell-intrinsic expression of STING, but not cGAS, was also significantly lower in the HER2 high areas than the HER2 low areas in HER2-positive GC tissues. Moreover, in vitro experiments, we demonstrated that the blockade of HER2 signaling increased the expression of STING and its target genes, including IFNB1, CXCL9/10/11, and CCL5, in HER2-positive GC cell lines. CONCLUSIONS: Our results suggest that HER2 signaling might suppress immune cell activation in the GC TME by inhibiting STING signaling in tumor cells in HER2-positive GC.


Asunto(s)
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Regulación hacia Abajo , Linfocitos T CD8-positivos , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Interferones/genética , Interferones/metabolismo , Microambiente Tumoral
12.
Pediatr Int ; 65(1): e15494, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36740922

RESUMEN

BACKGROUND: Early treatment may improve the prognosis of acute encephalopathy (AE). However, methods for early diagnosis have not yet been established. In this paper, we examined methods for the early diagnosis of AE. METHODS: We extracted data on patients with febrile status epilepticus from the electronic medical records in our department between March 2016 and April 2021. Among these, 79 patients who underwent continuous electroencephalography (cEEG) were included in this study. Patients who exhibited psychomotor retardation or abnormal brain magnetic resonance imaging findings were assigned to Group E (n = 20), and the remaining patients were the control group (Group C, n = 59). The following tests were compared retrospectively between these two groups on admission: cEEG, serum hepatic function tests, and blood coagulation tests. RESULTS: The percentage of patients who exhibited high-amplitude slow waves or flat waves on cEEG at the time of admission was statistically significantly higher in Group E than in Group C (p < 0.01). Moreover, the percentage of patients whose high-amplitude slow waves or flat brain waves on admission disappeared within 6 h after an initial episode of convulsion was statistically significantly lower in Group E than in Group C (p < 0.01). Furthermore, all the items in the coagulation and the hepatic function tests were statistically significantly different in Group E from those in Group C (p < 0.05). CONCLUSION: These results showed that cEEG together with hepatic function and coagulation tests may be useful for the differential diagnosis of AE.


Asunto(s)
Encefalopatías , Estado Epiléptico , Humanos , Estudios Retrospectivos , Encefalopatías/diagnóstico , Convulsiones/diagnóstico , Estado Epiléptico/diagnóstico , Electroencefalografía/métodos
13.
BMC Surg ; 23(1): 8, 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36635689

RESUMEN

BACKGROUND: Systemic inflammation has been reported to be associated with cancer progression and metastasis. Systemic inflammation score (SIS), calculated from preoperative serum albumin level and lymphocyte-to-monocyte ratio, has been shown to be a novel prognostic factor for several types of tumors. This study aimed to evaluate the prognostic value of the SIS in patients with pT2-4 resectable gastric cancer (GC). METHODS: Total 97 patients with pT2-4 GC who underwent curative surgery from 322 cases between 2009 and 2015 in Fukushima Medical University Hospital were included. We performed univariate and multivariate analyses to evaluate the usefulness of preoperative SIS and other prognostic factors for relapse-free survival (RFS) and overall survival (OS). RESULTS: The higher SIS score was associated with undifferentiated cancer and recurrence. Univariate analysis of RFS identified deeper tumor invasion and higher SIS were significant risk factors and multivariate analysis revealed that both of them were independent prognostic factors for RFS. As for OS, age, tumor invasion, SIS and LNR were significantly correlated with RFS. In multivariate analysis, tumor invasion, SIS and LNR were independent prognostic factors for OS. CONCLUSIONS: SIS was an independent prognostic factor for RFS and OS in pT2-4 resectable gastric cancer patients who underwent curative gastrectomy.


Asunto(s)
Neoplasias Gástricas , Humanos , Pronóstico , Neoplasias Gástricas/patología , Estudios Retrospectivos , Recurrencia Local de Neoplasia/epidemiología , Inflamación
14.
Comput Stat ; : 1-25, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37360994

RESUMEN

This study addressed the issue of determining multiple potential clusters with regularization approaches for the purpose of spatio-temporal clustering. The generalized lasso framework has flexibility to incorporate adjacencies between objects in the penalty matrix and to detect multiple clusters. A generalized lasso model with two L1 penalties is proposed, which can be separated into two generalized lasso models: trend filtering of temporal effect and fused lasso of spatial effect for each time point. To select the tuning parameters, the approximate leave-one-out cross-validation (ALOCV) and generalized cross-validation (GCV) are considered. A simulation study is conducted to evaluate the proposed method compared to other approaches in different problems and structures of multiple clusters. The generalized lasso with ALOCV and GCV provided smaller MSE in estimating the temporal and spatial effect compared to unpenalized method, ridge, lasso, and generalized ridge. In temporal effects detection, the generalized lasso with ALOCV and GCV provided relatively smaller and more stable MSE than other methods, for different structure of true risk values. In spatial effects detection, the generalized lasso with ALOCV provided higher index of edges detection accuracy. The simulation also suggested using a common tuning parameter over all time points in spatial clustering. Finally, the proposed method was applied to the weekly Covid-19 data in Japan form March 21, 2020, to September 11, 2021, along with the interpretation of dynamic behavior of multiple clusters.

15.
Gan To Kagaku Ryoho ; 50(13): 1742-1744, 2023 Dec.
Artículo en Japonés | MEDLINE | ID: mdl-38303192

RESUMEN

The patient underwent sigmoidectomy with D3 lymph node dissection and partial bladder resection for sigmoid colon cancer(cT4bN1M0, cStage Ⅲa), after preoperative chemotherapy with mFOLFOX plus panitumumab, and FOLFOXIRI plus bevacizumab. Postoperative adjuvant chemotherapy was performed by 8 courses of CAPOX. He relapsed hilar lymph nodes and peritoneal dissemination after 13 months after surgery, he underwent resection of the recurrent lesions. Four months after, he developed recurrence in liver and peritoneum. Although he was treated with FOLFIRI plus ramucirumab or aflibercept, resulted in progression of disease, then he received trifluridine tipiracil hydrochloride plus bevacizumab. At this point, the Japanese health insulance had started to cover pembrolizumab, this therapy was started as the fourth chemotherapy after the diagnosis of high frequency microsatellite instability(MSI), and then tumor markers rapidly declined. He underwent 38 courses of pembrolizumab, the recurrent lesions both liver and peritoneum disappeared. He had stoma closure, peritoneal dissemination disappeared not only intraoperatively but also in histologically from the peritoneal scar. He has received pembrolizumab for 4 years without another recurrence. Here, we report a case of MSI-high sigmoid colon cancer in which long-term survival was achieved by pembrolizumab for recurrent lesions resistant to conventional chemotherapy.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Neoplasias del Colon Sigmoide , Humanos , Masculino , Anticuerpos Monoclonales Humanizados/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Bevacizumab/uso terapéutico , Neoplasias del Colon Sigmoide/tratamiento farmacológico , Neoplasias del Colon Sigmoide/cirugía , Neoplasias del Colon Sigmoide/patología
16.
Br J Cancer ; 126(6): 917-926, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34893760

RESUMEN

BACKGROUND: Colorectal cancer (CRC) develops through chromosomal instability (CIN) or microsatellite instability (MSI) due to deficient mismatch-repair (dMMR). We aimed to characterise novel cancer-associated genes that are downregulated upon malignant transformation in microsatellite stable (MSS) CRCs, which typically exhibit CIN with proficient mismatch-repair (pMMR). METHODS: Comprehensive screening was conducted on adenomas, MSI/MSS CRCs and cell lines, followed by copy number analysis, and their genetic and prognostic relevance was confirmed in microarray and RNA-seq cohorts (n = 3262, in total). Immunohistochemistry for SH2D4A was performed in 524 specimens of adenoma, carcinoma in situ and dMMR/pMMR CRC. The functional role of SH2D4A was investigated using CRC cell lines. RESULTS: A set of 11 genes, including SH2D4A, was downregulated during the adenoma-carcinoma sequence in MSS/CIN CRCs, mainly due to chromosome 8p deletions, and their negative prognostic impact was validated in independent cohorts. All adenomas were SH2D4A positive, but a subset of CRCs (5.3%) lacked SH2D4A immunohistochemical staining, correlating with poor prognosis and scarce T cell infiltration. SH2D4A depletion did not affect cell proliferation or IL-6-induced STAT3 phosphorylation. CONCLUSIONS: Our findings suggest that downregulation of multiple genes on chromosome 8p, including SH2D4A, cooperatively contribute to tumorigenesis, resulting in the immune cold tumour microenvironment and poor prognosis.


Asunto(s)
Neoplasias Colorrectales , Linfocitos Infiltrantes de Tumor , Monosomía , Cromosomas Humanos Par 8/genética , Cromosomas Humanos Par 8/inmunología , Cromosomas Humanos Par 8/metabolismo , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Reparación de la Incompatibilidad de ADN , Regulación hacia Abajo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Linfocitos Infiltrantes de Tumor/inmunología , Inestabilidad de Microsatélites , Monosomía/genética , Monosomía/inmunología , Pronóstico , Linfocitos T , Microambiente Tumoral
17.
Plant Cell Physiol ; 63(1): 92-103, 2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-34623443

RESUMEN

Light-dependent activation of chloroplast enzymes is required for the rapid induction of photosynthesis after a shift from dark to light. The thioredoxin (Trx) system plays a central role in this process. In chloroplasts, the Trx system consists of two pathways: the ferredoxin (Fd)/Trx pathway and the nicotinamide adenine dinucleotide phosphate (NADPH)-Trx reductase C (NTRC) pathway. In Arabidopsis (Arabidopsis thaliana) mutants defective in either pathway, the photoreduction of thiol enzymes was impaired, resulting in decreased carbon fixation. The close relationship between the Fd/Trx pathway and proton gradient regulation 5 (PGR5)-dependent photosystem I cyclic electron transport (PSI CET) in the induction of photosynthesis was recently elucidated. However, how the PGR5-dependent pathway is involved in the NTRC pathway is unclear, although NTRC has been suggested to physically interact with PGR5. In this study, we analyzed Arabidopsis mutants lacking either the PGR5 or the chloroplast NADH dehydrogenase-like complex (NDH)-dependent PSI CET pathway in the ntrc mutant background. The ntrc pgr5 double mutant suppressed both the growth defects and the high non-photochemical quenching phenotype of the ntrc mutant when grown under long-day conditions. By contrast, the inactivation of NDH activity with the chlororespiratory reduction 2-2 mutant failed to suppress either phenotype. We discovered that the phenotypic rescue of ntrc by pgr5 is caused by the partial restoration of Trx-dependent reduction of thiol enzymes. These results suggest that electron partitioning to the PGR5-dependent pathway and the Trx system needs to be properly regulated for the activation of the Calvin-Benson-Bassham cycle enzymes during the induction of photosynthesis.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Redes y Vías Metabólicas/efectos de la radiación , Oxidación-Reducción/efectos de la radiación , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Adaptación Ocular/genética , Adaptación Ocular/fisiología , Adaptación a la Oscuridad/genética , Adaptación a la Oscuridad/fisiología , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Genotipo , Redes y Vías Metabólicas/genética , Mutación , Fotosíntesis/fisiología , Reductasa de Tiorredoxina-Disulfuro/genética
18.
Plant Cell Physiol ; 63(7): 901-918, 2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35640621

RESUMEN

The awn, a needle-like structure extending from the tip of the lemma in grass species, plays a role in environmental adaptation and fitness. In some crops, awns appear to have been eliminated during domestication. Although numerous genes involved in awn development have been identified, several dominant genes that eliminate awns are also known to exist. For example, in sorghum (Sorghum bicolor), the dominant awn-inhibiting gene has been known since 1921; however, its molecular features remain uncharacterized. In this study, we conducted quantitative trait locus analysis and a genome-wide association study of awn-related traits in sorghum and identified DOMINANT AWN INHIBITOR (DAI), which encodes the ALOG family protein on chromosome 3. DAI appeared to be present in most awnless sorghum cultivars, likely because of its effectiveness. Detailed analysis of the ALOG protein family in cereals revealed that DAI originated from a duplication of its twin paralog (DAIori) on chromosome 10. Observations of immature awns in near-isogenic lines revealed that DAI inhibits awn elongation by suppressing both cell proliferation and elongation. We also found that only DAI gained a novel function to inhibit awn elongation through an awn-specific expression pattern distinct from that of DAIori. Interestingly, heterologous expression of DAI with its own promoter in rice inhibited awn elongation in the awned cultivar Kasalath. We found that DAI originated from gene duplication, providing an interesting example of gain-of-function that occurs only in sorghum but shares its functionality with rice and sorghum.


Asunto(s)
Oryza , Sorghum , Proliferación Celular/genética , Grano Comestible/genética , Duplicación de Gen , Estudio de Asociación del Genoma Completo , Oryza/metabolismo , Sorghum/genética
19.
Plant Cell Physiol ; 63(5): 713-728, 2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35312772

RESUMEN

Understanding uptake and redistribution of essential minerals or sequestering of toxic elements is important for optimized crop production. Although the mechanisms controlling mineral transport have been elucidated in rice and other species, little is understood in sorghum-an important C4 cereal crop. Here, we assessed the genetic factors that govern grain ionome profiles in sorghum using recombinant inbred lines (RILs) derived from a cross between BTx623 and NOG (Takakibi). Pairwise correlation and clustering analysis of 22 elements, measured in sorghum grains harvested under greenhouse conditions, indicated that the parental lines, as well as the RILs, show different ionomes. In particular, BTx623 accumulated significantly higher levels of cadmium (Cd) than NOG, because of differential root-to-shoot translocation factors between the two lines. Quantitative trait locus (QTL) analysis revealed a prominent QTL for grain Cd concentration on chromosome 2. Detailed analysis identified SbHMA3a, encoding a P1B-type ATPase heavy metal transporter, as responsible for low Cd accumulation in grains; the NOG allele encoded a functional HMA3 transporter (SbHMA3a-NOG) whose Cd-transporting activity was confirmed by heterologous expression in yeast. BTx623 possessed a truncated, loss-of-function SbHMA3a allele. The functionality of SbHMA3a in NOG was confirmed by Cd concentrations of F2 grains derived from the reciprocal cross, in which the NOG allele behaved in a dominant manner. We concluded that SbHMA3a-NOG is a Cd transporter that sequesters excess Cd in root tissues, as shown in other HMA3s. Our findings will facilitate the isolation of breeding cultivars with low Cd in grains or in exploiting high-Cd cultivars for phytoremediation.


Asunto(s)
Oryza , Contaminantes del Suelo , Sorghum , Alelos , Cadmio/metabolismo , Grano Comestible/genética , Grano Comestible/metabolismo , Oryza/genética , Oryza/metabolismo , Fitomejoramiento , Contaminantes del Suelo/metabolismo , Sorghum/genética , Sorghum/metabolismo
20.
Cancer Immunol Immunother ; 71(11): 2765-2776, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35429245

RESUMEN

Deficient mismatch repair (dMMR)/microsatellite instability (MSI) colorectal cancer (CRC) has high immunogenicity and better prognosis compared with proficient MMR (pMMR)/microsatellite stable (MSS) CRC. Although the activation of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway has been considered to contribute to the high number of CD8+ TILs, its role in dMMR/MSI CRC is largely unknown. In this study, to examine the role of the cGAS-STING pathway on the recruitment of CD8+ TILs in dMMR/MSI CRC, we used public datasets and clinical tissue samples in our cohorts to evaluate the expression of cGAS, STING, and CD8+ TILs in pMMR/MSS and dMMR/MSI CRCs. According to the analysis of public datasets, the expression of cGAS-STING, CD8 effector gene signature, and CXCL10-CCL5, chemoattractants for CD8+ TILs which regulated by the cGAS-STING pathway, was significantly upregulated in dMMR/MSI CRC, and the expression of cGAS-STING was significantly associated with the expression of CD8 effector gene signature. Immunohistochemistry staining of the clinical tissue samples (n = 283) revealed that cGAS-STING was highly expressed in tumor cells of dMMR CRC, and higher expression of cGAS-STING in tumor cells was significantly associated with the increased number of CD8+ TILs. Moreover, we demonstrated that the downregulation of MMR gene in human CRC cell lines enhanced the activation of the cGAS-STING pathway. Taken together, for the first time, we found that dMMR/MSI CRC has maintained a high level of cGAS-STING expression in tumor cells, which might contribute to abundant CD8+ TILs and immune-active TME.


Asunto(s)
Neoplasias Colorrectales , Reparación de la Incompatibilidad de ADN , Factores Quimiotácticos , Neoplasias Colorrectales/patología , Humanos , Interferones , Proteínas de la Membrana , Inestabilidad de Microsatélites , Nucleotidiltransferasas/genética , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda