RESUMEN
Recent frameworks in cognitive neuroscience and behavioral neurology underscore interoceptive priors as core modulators of negative emotions. However, the field lacks experimental designs manipulating the priming of emotions via interoception and exploring their multimodal signatures in neurodegenerative models. Here, we designed a novel task that involves interoceptive and control-exteroceptive priming conditions followed by post-interoception and post-exteroception facial emotion recognition (FER). We recruited 114 participants, including healthy controls (HCs) as well as patients with behavioral variant frontotemporal dementia (bvFTD), Parkinson's disease (PD), and Alzheimer's disease (AD). We measured online EEG modulations of the heart-evoked potential (HEP), and associations with both brain structural and resting-state functional connectivity patterns. Behaviorally, post-interoception negative FER was enhanced in HCs but selectively disrupted in bvFTD and PD, with AD presenting generalized disruptions across emotion types. Only bvFTD presented impaired interoceptive accuracy. Increased HEP modulations during post-interoception negative FER was observed in HCs and AD, but not in bvFTD or PD patients. Across all groups, post-interoception negative FER correlated with the volume of the insula and the ACC. Also, negative FER was associated with functional connectivity along the (a) salience network in the post-interoception condition, and along the (b) executive network in the post-exteroception condition. These patterns were selectively disrupted in bvFTD (a) and PD (b), respectively. Our approach underscores the multidimensional impact of interoception on emotion, while revealing a specific pathophysiological marker of bvFTD. These findings inform a promising theoretical and clinical agenda in the fields of nteroception, emotion, allostasis, and neurodegeneration.SIGNIFICANCE STATEMENT We examined whether and how emotions are primed by interoceptive states combining multimodal measures in healthy controls and neurodegenerative models. In controls, negative emotion recognition and ongoing HEP modulations were increased after interoception. These patterns were selectively disrupted in patients with atrophy across key interoceptive-emotional regions (e.g., the insula and the cingulate in frontotemporal dementia, frontostriatal networks in Parkinson's disease), whereas persons with Alzheimer's disease presented generalized emotional processing abnormalities with preserved interoceptive mechanisms. The integration of both domains was associated with the volume and connectivity (salience network) of canonical interoceptive-emotional hubs, critically involving the insula and the anterior cingulate. Our study reveals multimodal markers of interoceptive-emotional priming, laying the groundwork for new agendas in cognitive neuroscience and behavioral neurology.
Asunto(s)
Emociones/fisiología , Reconocimiento Facial , Interocepción/fisiología , Degeneración Nerviosa/fisiopatología , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/fisiopatología , Enfermedad de Alzheimer/psicología , Mapeo Encefálico , Electroencefalografía , Potenciales Evocados/fisiología , Femenino , Demencia Frontotemporal/fisiopatología , Demencia Frontotemporal/psicología , Humanos , Masculino , Persona de Mediana Edad , Vías Nerviosas/fisiología , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/psicología , Desempeño Psicomotor/fisiologíaRESUMEN
BACKGROUND: Fatigue ranks among the most common and disabling symptoms in multiple sclerosis (MS). Recent theoretical works have surmised that this trait might be related to alterations across interoceptive mechanisms. However, this hypothesis has not been empirically evaluated. OBJECTIVES: To determine whether fatigue in MS patients is associated with specific behavioral, structural, and functional disruptions of the interoceptive domain. METHODS: Fatigue levels were established via the Modified Fatigue Impact Scale. Interoception was evaluated through a robust measure indexed by the heartbeat detection task. Structural and functional connectivity properties of key interoceptive hubs were tested by magnetic resonance imaging (MRI) and resting-state functional MRI. Machine learning analyses were employed to perform pairwise classifications. RESULTS: Only patients with fatigue presented with decreased interoceptive accuracy alongside decreased gray matter volume and increased functional connectivity in core interoceptive regions, the insula, and the anterior cingulate cortex. Each of these alterations was positively associated with fatigue. Finally, machine-learning analysis with a combination of the above interoceptive indices (behavioral, structural, and functional) successfully discriminated (area under the curve > 90%) fatigued patients from both non-fatigued and healthy controls. CONCLUSION: This study offers unprecedented evidence suggesting that disruptions of neurocognitive markers subserving interoception may constitute a signature of fatigue in MS.
Asunto(s)
Interocepción , Esclerosis Múltiple , Corteza Cerebral/diagnóstico por imagen , Fatiga/etiología , Humanos , Imagen por Resonancia Magnética , Esclerosis Múltiple/complicacionesRESUMEN
Multiple sclerosis (MS) patients present several alterations related to sensing of bodily signals. However, no specific neurocognitive impairment has yet been proposed as a core deficit underlying such symptoms. We aimed to determine whether MS patients present changes in interoception-that is, the monitoring of autonomic bodily information-a process that might be related to various bodily dysfunctions. We performed two studies in 34 relapsing-remitting, early-stage MS patients and 46 controls matched for gender, age, and education. In Study 1, we evaluated the heartbeat-evoked potential (HEP), a cortical signature of interoception, via a 128-channel EEG system during a heartbeat detection task including an exteroceptive and an interoceptive condition. Then, we obtained whole-brain MRI recordings. In Study 2, participants underwent fMRI recordings during two resting-state conditions: mind wandering and interoception. In Study 1, controls exhibited greater HEP modulation during the interoceptive condition than the exteroceptive one, but no systematic differences between conditions emerged in MS patients. Patients presented atrophy in the left insula, the posterior part of the right insula, and the right anterior cingulate cortex, with abnormal associations between neurophysiological and neuroanatomical patterns. In Study 2, controls showed higher functional connectivity and degree for the interoceptive state compared with mind wandering; however, this pattern was absent in patients, who nonetheless presented greater connectivity and degree than controls during mind wandering. MS patients were characterized by atypical multimodal brain signatures of interoception. This finding opens a new agenda to examine the role of inner-signal monitoring in the body symptomatology of MS.
Asunto(s)
Corteza Cerebral/fisiopatología , Conectoma/métodos , Electroencefalografía/métodos , Potenciales Evocados/fisiología , Frecuencia Cardíaca/fisiología , Interocepción/fisiología , Esclerosis Múltiple Recurrente-Remitente/fisiopatología , Adulto , Atrofia/patología , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Esclerosis Múltiple Recurrente-Remitente/diagnóstico por imagen , Esclerosis Múltiple Recurrente-Remitente/patologíaRESUMEN
The interplay between the brain and interoceptive signals is key in maintaining internal balance and orchestrating neural dynamics, encompassing influences on perceptual and self-awareness. Central to this interplay is the differentiation between the external world, others and the self, a cornerstone in the construction of bodily self-awareness. This review synthesizes physiological and behavioral evidence illustrating how interoceptive signals can mediate or influence bodily self-awareness, by encompassing interactions with various sensory modalities. To deepen our understanding of the basis of bodily self-awareness, we propose a network physiology perspective. This approach explores complex neural computations across multiple nodes, shifting the focus from localized areas to large-scale neural networks. It examines how these networks operate in parallel with and adapt to changes in visceral activities. Within this framework, we propose to investigate physiological factors that disrupt bodily self-awareness, emphasizing the impact of interoceptive pathway disruptions, offering insights across several clinical contexts. This integrative perspective not only can enhance the accuracy of mental health assessments but also paves the way for targeted interventions.
Asunto(s)
Concienciación , Interocepción , Autoimagen , Humanos , Interocepción/fisiología , Concienciación/fisiología , Red Nerviosa/fisiología , Encéfalo/fisiologíaRESUMEN
A coherent sense of self is crucial for social functioning and mental health. The N-methyl-D-aspartate antagonist ketamine induces short-term dissociative experiences and has therefore been used to model an altered state of self-perception. This randomized double-blind placebo-controlled cross-over study investigated the mechanisms for ketamine's effects on the bodily sense of self in the context of affective touch. Thirty healthy participants (15 females/15 males, age 19-39) received intravenous ketamine or placebo while performing self-touch and receiving touch by someone else during functional MRI - a previously established neural measure of tactile self-other-differentiation. Afterwards, tactile detection thresholds during self- and other-touch were assessed, as well as dissociative states, interoceptive awareness, and social touch attitudes. Compared to placebo, ketamine administration elicited dissociation and reduced neural activity associated with self-other-differentiation in the right temporoparietal cortex, which was most pronounced during other-touch. This reduction correlated with ketamine-induced reductions in interoceptive awareness. The temporoparietal cortex showed higher connectivity to somatosensory cortex and insula during other- compared to self-touch. This difference was augmented by ketamine, and correlated with dissociation strength for somatosensory cortex. These results demonstrate that disrupting the self-experience through ketamine administration affects neural activity associated with self-other-differentiation in a region involved in touch perception and social cognition, especially with regard to social touch by someone else. This process may be driven by ketamine-induced effects on top-down signaling, rendering the processing of predictable self-generated and unpredictable other-generated touch more similar. These findings provide further evidence for the intricate relationship of the bodily self with the tactile sense.
Asunto(s)
Estudios Cruzados , Ketamina , Imagen por Resonancia Magnética , Autoimagen , Percepción del Tacto , Humanos , Ketamina/farmacología , Ketamina/administración & dosificación , Femenino , Masculino , Método Doble Ciego , Adulto , Adulto Joven , Percepción del Tacto/efectos de los fármacos , Percepción del Tacto/fisiología , Antagonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Aminoácidos Excitadores/administración & dosificación , Tacto/efectos de los fármacos , Interocepción/efectos de los fármacos , Interocepción/fisiología , Afecto/efectos de los fármacos , Afecto/fisiologíaRESUMEN
Disease-specific mechanisms underlying emotion recognition difficulties in behavioural-variant frontotemporal dementia (bvFTD), Alzheimer's disease (AD), and Parkinson's disease (PD) are unknown. Interoceptive accuracy, accurately detecting internal cues (e.g., one's heart beating), and cognitive abilities are candidate mechanisms underlying emotion recognition. One hundred and sixty-eight participants (52 bvFTD; 41 AD; 24 PD; 51 controls) were recruited. Emotion recognition was measured via the Facial Affect Selection Task or the Mini-Social and Emotional Assessment Emotion Recognition Task. Interoception was assessed with a heartbeat detection task. Participants pressed a button each time they: 1) felt their heartbeat (Interoception); or 2) heard a recorded heartbeat (Exteroception-control). Cognition was measured via the Addenbrooke's Cognitive Examination-III or the Montreal Cognitive Assessment. Voxel-based morphometry analyses identified neural correlates associated with emotion recognition and interoceptive accuracy. All patient groups showed worse emotion recognition and cognition than controls (all P's ≤ .008). Only the bvFTD showed worse interoceptive accuracy than controls (P < .001). Regression analyses revealed that in bvFTD worse interoceptive accuracy predicted worse emotion recognition (P = .008). Whereas worse cognition predicted worse emotion recognition overall (P < .001). Neuroimaging analyses revealed that the insula, orbitofrontal cortex, and amygdala were involved in emotion recognition and interoceptive accuracy in bvFTD. Here, we provide evidence for disease-specific mechanisms for emotion recognition difficulties. In bvFTD, emotion recognition impairment is driven by inaccurate perception of the internal milieu. Whereas, in AD and PD, cognitive impairment likely underlies emotion recognition deficits. The current study furthers our theoretical understanding of emotion and highlights the need for targeted interventions.