RESUMEN
We report on ultra-violet (UV) photodetectors based on BaO nanoparticles by the detailed investigation of band gap and photoluminescence properties. The BaO nanomaterials were fabricated by the modified sol-gel technique. The innovation of co-doping can modulate the photoluminescence or sensing properties by narrowing the band gap related to enhancing the high carrier concentration, higher electronic lifetime, and low carriers recombination. It is investigated that the BaO nanoparticles with co-doping reveals a highly reduced band gap and exceptional photoluminescence properties as compared to the pristine BaO nanoparticles due to hindering carrier,s recombination for Ultra-violet (UV) photodetectors. The optical studies revealed that the addition of co-dopants in BaO host material creates new energy sites, so the band gap declines up to 1.31 eV as compared to that of pristine BaO (1.36 eV). The photoluminescence properties recorded with photoluminescence (PL) spectroscopy were recorded which revealed the decrease in PL intensity due to the hindering of carriers recombination with the addition of co-dopant metal ions. Furthermore, the inclusion of co-dopant metals results in an improvement in electrical conductivity because of a decline in carrier recombination, according to an I-V characteristic study. This factor contributes to enhance the photoluminescence properties of BaO which, in turn, contributes to enhance the sensing capability of the photodetector device. These obtained features modify optoelectronic properties are far superior as compared to that of previously reported literature on BaO nanomaterials, and the synthesized BaO semiconductor material becomes a potential candidate for efficient use in the ultraviolet (UV) photodetectors device applications.
RESUMEN
This study investigated the production of Cu2+-doped CoFe2O4 nanoparticles (CFO NPs) using a facile sol-gel technique. The impact of Cu2+ doping on the lattice parameters, morphology, optical properties, and electrical properties of CFO NPs was investigated for applications in electrical devices. The XRD analysis revealed the formation of spinel-phased crystalline structures of the specimens with no impurity phases. The average grain size, lattice constant, cell volume, and porosity were measured in the range of 4.55-7.07 nm, 8.1770-8.1097 Å, 546.7414-533.3525 Å3, and 8.77-6.93%, respectively. The SEM analysis revealed a change in morphology of the specimens with a rise in Cu2+ content. The particles started gaining a defined shape and size with a rise in Cu2+ doping. The Cu0.12Co0.88Fe2O4 NPs revealed clear grain boundaries with the least agglomeration. The energy band gap declined from 3.98 eV to 3.21 eV with a shift in Cu2+ concentration from 0.4 to 0.12. The electrical studies showed that doping a trace amount of Cu2+ improved the electrical properties of the CFO NPs without producing any structural distortions. The conductivity of the Cu2+-doped CFO NPs increased from 6.66 × 10-10 to 5.26 × 10-6 ⧠cm-1 with a rise in Cu2+ concentration. The improved structural and electrical characteristics of the prepared Cu2+-doped CFO NPs made them a suitable candidate for electrical devices, diodes, and sensor technology applications.