Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
Nature ; 586(7830): 509-515, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32967005

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the aetiological agent of coronavirus disease 2019 (COVID-19), an emerging respiratory infection caused by the introduction of a novel coronavirus into humans late in 2019 (first detected in Hubei province, China). As of 18 September 2020, SARS-CoV-2 has spread to 215 countries, has infected more than 30 million people and has caused more than 950,000 deaths. As humans do not have pre-existing immunity to SARS-CoV-2, there is an urgent need to develop therapeutic agents and vaccines to mitigate the current pandemic and to prevent the re-emergence of COVID-19. In February 2020, the World Health Organization (WHO) assembled an international panel to develop animal models for COVID-19 to accelerate the testing of vaccines and therapeutic agents. Here we summarize the findings to date and provides relevant information for preclinical testing of vaccine candidates and therapeutic agents for COVID-19.


Asunto(s)
Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/prevención & control , Modelos Animales de Enfermedad , Pandemias/prevención & control , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/prevención & control , Animales , Betacoronavirus/efectos de los fármacos , Betacoronavirus/inmunología , COVID-19 , Vacunas contra la COVID-19 , Infecciones por Coronavirus/inmunología , Hurones/virología , Humanos , Mesocricetus/virología , Ratones , Neumonía Viral/inmunología , Primates/virología , SARS-CoV-2 , Vacunas Virales/inmunología
2.
PLoS Pathog ; 19(4): e1011293, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37014911

RESUMEN

The mutation profile of the SARS-CoV-2 Omicron (lineage BA.1) variant posed a concern for naturally acquired and vaccine-induced immunity. We investigated the ability of prior infection with an early SARS-CoV-2 ancestral isolate (Australia/VIC01/2020, VIC01) to protect against disease caused by BA.1. We established that BA.1 infection in naïve Syrian hamsters resulted in a less severe disease than a comparable dose of the ancestral virus, with fewer clinical signs including less weight loss. We present data to show that these clinical observations were almost absent in convalescent hamsters challenged with the same dose of BA.1 50 days after an initial infection with ancestral virus. These data provide evidence that convalescent immunity against ancestral SARS-CoV-2 is protective against BA.1 in the Syrian hamster model of infection. Comparison with published pre-clinical and clinical data supports consistency of the model and its predictive value for the outcome in humans. Further, the ability to detect protection against the less severe disease caused by BA.1 demonstrates continued value of the Syrian hamster model for evaluation of BA.1-specific countermeasures.


Asunto(s)
COVID-19 , Animales , Cricetinae , Humanos , Convalecencia , Mesocricetus , SARS-CoV-2
3.
PLoS Pathog ; 18(9): e1010807, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36067210

RESUMEN

Understanding the host pathways that define susceptibility to Severe-acute-respiratory-syndrome-coronavirus-2 (SARS-CoV-2) infection and disease are essential for the design of new therapies. Oxygen levels in the microenvironment define the transcriptional landscape, however the influence of hypoxia on virus replication and disease in animal models is not well understood. In this study, we identify a role for the hypoxic inducible factor (HIF) signalling axis to inhibit SARS-CoV-2 infection, epithelial damage and respiratory symptoms in the Syrian hamster model. Pharmacological activation of HIF with the prolyl-hydroxylase inhibitor FG-4592 significantly reduced infectious virus in the upper and lower respiratory tract. Nasal and lung epithelia showed a reduction in SARS-CoV-2 RNA and nucleocapsid expression in treated animals. Transcriptomic and pathological analysis showed reduced epithelial damage and increased expression of ciliated cells. Our study provides new insights on the intrinsic antiviral properties of the HIF signalling pathway in SARS-CoV-2 replication that may be applicable to other respiratory pathogens and identifies new therapeutic opportunities.


Asunto(s)
COVID-19 , Inhibidores de Prolil-Hidroxilasa , Animales , Antivirales , Cricetinae , Hipoxia , Pulmón/patología , Mesocricetus , Oxígeno , ARN Viral , SARS-CoV-2
4.
PLoS Pathog ; 18(1): e1010161, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35025969

RESUMEN

The global response to Coronavirus Disease 2019 (COVID-19) is now facing new challenges such as vaccine inequity and the emergence of SARS-CoV-2 variants of concern (VOCs). Preclinical models of disease, in particular animal models, are essential to investigate VOC pathogenesis, vaccine correlates of protection and postexposure therapies. Here, we provide an update from the World Health Organization (WHO) COVID-19 modeling expert group (WHO-COM) assembled by WHO, regarding advances in preclinical models. In particular, we discuss how animal model research is playing a key role to evaluate VOC virulence, transmission and immune escape, and how animal models are being refined to recapitulate COVID-19 demographic variables such as comorbidities and age.


Asunto(s)
COVID-19/etiología , Modelos Animales de Enfermedad , SARS-CoV-2 , Factores de Edad , Animales , COVID-19/prevención & control , COVID-19/terapia , Vacunas contra la COVID-19/efectos adversos , Vacunas contra la COVID-19/inmunología , Comorbilidad , Humanos , SARS-CoV-2/inmunología , SARS-CoV-2/patogenicidad
5.
Inorg Chem ; 63(23): 10500-10510, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38805658

RESUMEN

The direct conversion of solar energy into chemical energy represents an enormous challenge for current science. One of the commonly proposed photocatalytic systems is composed of a photosensitizer (PS) and a catalyst, together with a sacrificial electron donor (ED) when only the reduction of protons to H2 is addressed. Layered double hydroxides (LDH) have emerged as effective catalysts. Herein, two Co-Al LDH and their composites with graphene oxide (GO) or graphene quantum dots (GQD) have been prepared by coprecipitation and urea hydrolysis, which determined their structure and so their catalytic performance, giving H2 productions between 1409 and 8643 µmol g-1 using a ruthenium complex as PS and triethanolamine as ED at 450 nm. The influence of different factors, including the integration of both components, on their catalytic behavior, has been studied. The proper arrangement between the particles of both components seems to be the determining factor for achieving a synergistic interaction between LDH and GO or GQD. The novel Co-Al LDH composite with intercalated GQD achieved an outstanding catalytic efficiency (8643 µmol H2 g-1) and exhibited excellent reusability after 3 reaction cycles, thus representing an optimal integration between graphene materials and Co-Al LDH for visible light driven H2 photocatalytic production.

6.
PLoS Pathog ; 17(8): e1009427, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34370799

RESUMEN

Impaired type I interferons (IFNs) production or signaling have been associated with severe COVID-19, further promoting the evaluation of recombinant type I IFNs as therapeutics against SARS-CoV-2 infection. In the Syrian hamster model, we show that intranasal administration of IFN-α starting one day pre-infection or one day post-infection limited weight loss and decreased viral lung titers. By contrast, intranasal administration of IFN-α starting at the onset of symptoms three days post-infection had no impact on the clinical course of SARS-CoV-2 infection. Our results provide evidence that early type I IFN treatment is beneficial, while late interventions are ineffective, although not associated with signs of enhanced disease.


Asunto(s)
Antivirales/administración & dosificación , Tratamiento Farmacológico de COVID-19 , Interferón Tipo I/administración & dosificación , Administración Intranasal , Animales , Chlorocebus aethiops , Cricetinae , Modelos Animales de Enfermedad , Mesocricetus , SARS-CoV-2
7.
PLoS Pathog ; 17(3): e1009410, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33720986

RESUMEN

The Mycobacterium tuberculosis complex (MTBC) is a group of related pathogens that cause tuberculosis (TB) in mammals. MTBC species are distinguished by their ability to sustain in distinct host populations. While Mycobacterium bovis (Mbv) sustains transmission cycles in cattle and wild animals and causes zoonotic TB, M. tuberculosis (Mtb) affects human populations and seldom causes disease in cattle. The host and pathogen determinants underlying host tropism between MTBC species are still unknown. Macrophages are the main host cell that encounters mycobacteria upon initial infection, and we hypothesised that early interactions between the macrophage and mycobacteria influence species-specific disease outcome. To identify factors that contribute to host tropism, we analysed blood-derived primary human and bovine macrophages (hMϕ or bMϕ, respectively) infected with Mbv and Mtb. We show that Mbv and Mtb reside in different cellular compartments and differentially replicate in hMϕ whereas both Mbv and Mtb efficiently replicate in bMϕ. Specifically, we show that out of the four infection combinations, only the infection of bMϕ with Mbv promoted the formation of multinucleated giant cells (MNGCs), a hallmark of tuberculous granulomas. Mechanistically, we demonstrate that both MPB70 from Mbv and extracellular vesicles released by Mbv-infected bMϕ promote macrophage multinucleation. Importantly, we extended our in vitro studies to show that granulomas from Mbv-infected but not Mtb-infected cattle contained higher numbers of MNGCs. Our findings implicate MNGC formation in the contrasting pathology between Mtb and Mbv for the bovine host and identify MPB70 from Mbv and extracellular vesicles from bMϕ as mediators of this process.


Asunto(s)
Interacciones Huésped-Patógeno/fisiología , Macrófagos/microbiología , Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculosis/microbiología , Tropismo Viral/fisiología , Animales , Bovinos , Células Gigantes , Humanos
9.
PLoS Pathog ; 17(3): e1009330, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33662023

RESUMEN

Pigs are natural hosts for the same subtypes of influenza A viruses as humans and integrally involved in virus evolution with frequent interspecies transmissions in both directions. The emergence of the 2009 pandemic H1N1 virus illustrates the importance of pigs in evolution of zoonotic strains. Here we generated pig influenza-specific monoclonal antibodies (mAbs) from H1N1pdm09 infected pigs. The mAbs recognized the same two major immunodominant haemagglutinin (HA) epitopes targeted by humans, one of which is not recognized by post-infection ferret antisera that are commonly used to monitor virus evolution. Neutralizing activity of the pig mAbs was comparable to that of potent human anti-HA mAbs. Further, prophylactic administration of a selected porcine mAb to pigs abolished lung viral load and greatly reduced lung pathology but did not eliminate nasal shedding of virus after H1N1pdm09 challenge. Hence mAbs from pigs, which target HA can significantly reduce disease severity. These results, together with the comparable sizes of pigs and humans, indicate that the pig is a valuable model for understanding how best to apply mAbs as therapy in humans and for monitoring antigenic drift of influenza viruses in humans, thereby providing information highly relevant to making influenza vaccine recommendations.


Asunto(s)
Anticuerpos Antivirales/farmacología , Epítopos/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Gripe Humana/tratamiento farmacológico , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/inmunología , Hemaglutininas/inmunología , Hemaglutininas/farmacología , Humanos , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H1N1 del Virus de la Influenza A/inmunología , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Gripe Humana/virología , Porcinos
10.
Langmuir ; 39(15): 5294-5305, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37022353

RESUMEN

In this work, we synthesized several bionanocomposites of hydrotalcites containing carboxymethylcellulose as interlayer anion (HT-CMC) to be used as sorbents for parabens, a family of emergent pollutants (specifically, for 4-methyl-, 4-propyl- and 4-benzylparaben). Bionanocomposites were obtained by ultrasound-assisted coprecipitation and characterized by X-ray diffraction analysis, fourier transform infrared and raman spectroscopies, elemental and thermogravimetric analysis, scanning and transmission electron microscopies and X-ray fluorescence. All materials proved to be efficient sorbents for parabens through a process conforming to a pseudo second-order kinetics. The experimental adsorption data fitted the Freundlich model very closely and were also highly correlated with the Temkin model. The effects of pH, adsorbate concentration, amount of sorbent and temperature on the adsorption process was evaluated, obtaining the best results for methylparaben adsorption at pH 7, 25 mg of adsorbent and 348 K. The sorbent, HT-CMC-3, showed the highest adsorption capacity (>70%) for methylparaben. Furthermore, a reusability study showed that the bionanocomposite is reusable after its regeneration with methanol. The sorbent still retained its adsorption capacity for up to 5 times with a little loss of efficiency (<5%).

11.
J Pathol ; 257(2): 198-217, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35107828

RESUMEN

SARS-CoV-2, the causative agent of COVID-19, typically manifests as a respiratory illness, although extrapulmonary involvement, such as in the gastrointestinal tract and nervous system, as well as frequent thrombotic events, are increasingly recognised. How this maps onto SARS-CoV-2 organ tropism at the histological level, however, remains unclear. Here, we perform a comprehensive validation of a monoclonal antibody against the SARS-CoV-2 nucleocapsid protein (NP) followed by systematic multisystem organ immunohistochemistry analysis of the viral cellular tropism in tissue from 36 patients, 16 postmortem cases and 16 biopsies with polymerase chain reaction (PCR)-confirmed SARS-CoV-2 status from the peaks of the pandemic in 2020 and four pre-COVID postmortem controls. SARS-CoV-2 anti-NP staining in the postmortem cases revealed broad multiorgan involvement of the respiratory, digestive, haematopoietic, genitourinary and nervous systems, with a typical pattern of staining characterised by punctate paranuclear and apical cytoplasmic labelling. The average time from symptom onset to time of death was shorter in positively versus negatively stained postmortem cases (mean = 10.3 days versus mean = 20.3 days, p = 0.0416, with no cases showing definitive staining if the interval exceeded 15 days). One striking finding was the widespread presence of SARS-CoV-2 NP in neurons of the myenteric plexus, a site of high ACE2 expression, the entry receptor for SARS-CoV-2, and one of the earliest affected cells in Parkinson's disease. In the bone marrow, we observed viral SARS-CoV-2 NP within megakaryocytes, key cells in platelet production and thrombus formation. In 15 tracheal biopsies performed in patients requiring ventilation, there was a near complete concordance between immunohistochemistry and PCR swab results. Going forward, our findings have relevance to correlating clinical symptoms with the organ tropism of SARS-CoV-2 in contemporary cases as well as providing insights into potential long-term complications of COVID-19. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Megacariocitos , Plexo Mientérico , Neuronas
12.
Plant Dis ; 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37933148

RESUMEN

Bioprotection using plant extracts is an environmentally friendly strategy in crop protection. Effective control of Verticillium wilt of olive (Olea europaea; VWO), caused by Verticillium dahliae, has proven challenging due to the ineffectiveness of chemicals, which makes it necessary to search for new control tools. Thus, the aim of this study was to evaluate the effect of pomegranate (Punica granatum) and carob (Ceratonia siliqua) extracts against VWO. Extracts derived from pomegranate peels and carob pods and leaves were obtained using ethanol, methanol, or ethyl acetate as solvents. A targeted analysis of their metabolite composition was performed using QTRAP Ultra High-Performance Liquid Chromatography with Mass Spectrometry (QTRAP UHPLC‒MS). Remarkably, gallic acid was detected in all extracts at a high concentration. The effect of the extracts on the mycelial growth and on the germination of conidia and microsclerotia of V. dahliae was evaluated by in vitro sensitivity tests at various doses: 0 (control), 3, 30, 300 and 3,000 mg of extract/liter. Extracts obtained with ethanol or methanol significantly reduced the viability of V. dahliae structures when applied at the highest dose, while those obtained with ethyl acetate were ineffective across all doses. The most effective extracts, as determined in vitro, were then evaluated against the disease in olive plants. Potted plants of cv. Picual were treated by spraying (foliar application) or irrigation (root application) of extracts at 3,000 mg of extract/liter, followed by inoculation with V. dahliae. The results indicated that foliar applications were ineffective, while root treatments with pomegranate peel or carob leaf extracts were more effective in reducing disease severity, regardless of solvent, compared to that of the untreated control.

13.
J Infect Dis ; 225(3): 404-412, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34893851

RESUMEN

Cocirculation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza viruses could pose unpredictable risks to health systems globally, with recent studies suggesting more severe disease outcomes in coinfected patients. The initial lack of a readily available coronavirus disease 2019 (COVID-19) vaccine has reinforced the importance of influenza vaccine programs during the COVID-19 pandemic. Live attenuated influenza vaccine (LAIV) is an important tool in protecting against influenza, particularly in children. However, it is unknown whether LAIV administration influences the outcomes of acute SARS-CoV-2 infection or disease. To investigate this, quadrivalent LAIV was administered to ferrets 3 days before or after SARS-CoV-2 infection. LAIV administration did not exacerbate the SARS-CoV-2 disease course or lung pathology with either regimen. In addition, LAIV administered before SARS-CoV-2 infection significantly reduced SARS-CoV-2 replication and shedding in the upper respiratory tract. This study demonstrated that LAIV administration in close proximity to SARS-CoV-2 infection does not exacerbate mild disease and can reduce SARS-CoV-2 shedding.


Asunto(s)
COVID-19 , Vacunas contra la Influenza , Esparcimiento de Virus , Animales , COVID-19/terapia , Modelos Animales de Enfermedad , Hurones , Vacunas contra la Influenza/uso terapéutico , Pulmón , Sistema Respiratorio/virología , SARS-CoV-2/fisiología , Vacunas Atenuadas/uso terapéutico , Replicación Viral
14.
J Virol ; 95(24): e0083321, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34586862

RESUMEN

Filoviruses cause high-consequence infections with limited approved medical countermeasures (MCMs). MCM development is dependent upon well-characterized animal models for the assessment of antiviral agents and vaccines. Following large-scale Ebola virus (EBOV) disease outbreaks in Africa, some survivors are left with long-term sequelae and persistent virus in immune-privileged sites for many years. We report the characterization of the ferret as a model for Ebola virus infection, reproducing disease and lethality observed in humans. The onset of clinical signs is rapid, and EBOV is detected in the blood, oral, and rectal swabs and all tissues studied. We identify viral RNA in the eye (a site of immune privilege) and report on specific genomic changes in EBOV present in this structure. Thus, the ferret model has utility in testing MCMs that prevent or treat long-term EBOV persistence in immune-privileged sites. IMPORTANCE Recent reemergence of Ebola in Guinea that caused over 28,000 cases between 2013 and 2016 has been linked to the original virus from that region. It appears the virus has remained in the region for at least 5 years and is likely to have been maintained in humans. Persistence of Ebola in areas of the body for extended periods of time has been observed, such as in the eye and semen. Despite the importance of reintroduction of Ebola from this route, such events are rare in the population, which makes studying medical interventions to clear persistent virus difficult. We studied various doses of Ebola in ferrets and detected virus in the eyes of most ferrets. We believe this model will enable the study of medical interventions that promote clearance of Ebola virus from sites that promote persistence.


Asunto(s)
Ebolavirus/genética , Evolución Molecular , Ojo/virología , Fiebre Hemorrágica Ebola/fisiopatología , Fiebre Hemorrágica Ebola/virología , Animales , Anticuerpos Antivirales/inmunología , Modelos Animales de Enfermedad , Ebolavirus/inmunología , Femenino , Hurones/inmunología , Fiebre Hemorrágica Ebola/inmunología , Masculino , ARN Viral/genética
15.
J Gen Virol ; 102(3)2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33612147

RESUMEN

Understanding the pathogenesis of the SARS-CoV-2 infection is key to developing preventive and therapeutic strategies against COVID-19, in the case of severe illness but also when the disease is mild. The use of appropriate experimental animal models remains central in the in vivo exploration of the physiopathology of infection and antiviral strategies. This study describes SARS-CoV-2 intranasal infection in ferrets and hamsters with low doses of low-passage SARS-CoV-2 clinical French isolate UCN19, describing infection levels, excretion, immune responses and pathological patterns in both animal species. Individual infection with 103 p.f.u. SARS-CoV-2 induced a more severe disease in hamsters than in ferrets. Viral RNA was detected in the lungs of hamsters but not of ferrets and in the brain (olfactory bulb and/or medulla oblongata) of both species. Overall, the clinical disease remained mild, with serological responses detected from 7 days and 10 days post-inoculation in hamsters and ferrets respectively. The virus became undetectable and pathology resolved within 14 days. The kinetics and levels of infection can be used in ferrets and hamsters as experimental models for understanding the pathogenicity of SARS-CoV-2, and testing the protective effect of drugs.


Asunto(s)
Anticuerpos Antivirales/inmunología , COVID-19/virología , Cricetinae , Modelos Animales de Enfermedad , Hurones , Animales , Encéfalo/virología , COVID-19/inmunología , COVID-19/patología , COVID-19/fisiopatología , Progresión de la Enfermedad , Inmunoglobulina G/inmunología , Pulmón/patología , Pulmón/virología , Nariz , Reacción en Cadena en Tiempo Real de la Polimerasa , SARS-CoV-2/genética , SARS-CoV-2/inmunología , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/patogenicidad , Carga Viral/genética
16.
J Gen Virol ; 101(10): 1047-1055, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32667279

RESUMEN

Type I interferon receptor knockout mice (strain A129) were assessed as a disease model of hantavirus infection. A range of infection routes (intramuscular, intraperitoneal and intranasal) were assessed using minimally passaged Seoul virus (strain Humber). Dissemination of virus to the spleen, kidney and lung was observed at 5 days after intramuscular and intraperitoneal challenge, which was resolved by day 14. In contrast, intranasal challenge of A129 mice demonstrated virus tropism to the lung, which was maintained to day 14 post-challenge. These data support the use of the A129 mouse model for future infection studies and the in vivo evaluation of interventions.


Asunto(s)
Modelos Animales de Enfermedad , Infecciones por Hantavirus , Orthohantavirus/fisiología , Animales , Orthohantavirus/aislamiento & purificación , Orthohantavirus/patogenicidad , Infecciones por Hantavirus/patología , Infecciones por Hantavirus/virología , Fiebre Hemorrágica con Síndrome Renal/patología , Fiebre Hemorrágica con Síndrome Renal/virología , Riñón/virología , Hígado/patología , Pulmón/patología , Pulmón/virología , Masculino , Ratones , Ratones Noqueados , ARN Viral/análisis , ARN Viral/sangre , Receptor de Interferón alfa y beta/genética , Bazo/patología , Bazo/virología , Tropismo Viral
17.
J Immunol ; 200(12): 4068-4077, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29703861

RESUMEN

Influenza is a major health threat, and a broadly protective influenza vaccine would be a significant advance. Signal Minus FLU (S-FLU) is a candidate broadly protective influenza vaccine that is limited to a single cycle of replication, which induces a strong cross-reactive T cell response but a minimal Ab response to hemagglutinin after intranasal or aerosol administration. We tested whether an H3N2 S-FLU can protect pigs and ferrets from heterosubtypic H1N1 influenza challenge. Aerosol administration of S-FLU to pigs induced lung tissue-resident memory T cells and reduced lung pathology but not the viral load. In contrast, in ferrets, S-FLU reduced viral replication and aerosol transmission. Our data show that S-FLU has different protective efficacy in pigs and ferrets, and that in the absence of Ab, lung T cell immunity can reduce disease severity without reducing challenge viral replication.


Asunto(s)
Vacunas contra la Influenza/inmunología , Infecciones por Orthomyxoviridae/inmunología , Administración Intranasal , Animales , Anticuerpos Antivirales/inmunología , Reacciones Cruzadas/inmunología , Hurones , Hemaglutininas/inmunología , Humanos , Inmunidad/inmunología , Memoria Inmunológica/inmunología , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/inmunología , Porcinos , Linfocitos T/inmunología , Vacunación/métodos , Replicación Viral/inmunología
18.
J Virol ; 92(2)2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29093086

RESUMEN

Cell motility and migration is a complex, multistep, and multicomponent process intrinsic to progression and metastasis. Motility is dependent on the activities of integrin receptors and Rho family GTPases, resulting in the remodeling of the actin cytoskeleton and formation of various motile actin-based protrusions. Merkel cell carcinoma (MCC) is an aggressive skin cancer with a high likelihood of recurrence and metastasis. Merkel cell polyomavirus (MCPyV) is associated with the majority of MCC cases, and MCPyV-induced tumorigenesis largely depends on the expression of the small tumor antigen (ST). Since the discovery of MCPyV, a number of mechanisms have been suggested to account for replication and tumorigenesis, but to date, little is known about potential links between MCPyV T antigen expression and the metastatic nature of MCC. Previously, we described the action of MCPyV ST on the microtubule network and how it impacts cell motility and migration. Here, we demonstrate that MCPyV ST affects the actin cytoskeleton to promote the formation of filopodia through a mechanism involving the catalytic subunit of protein phosphatase 4 (PP4C). We also show that MCPyV ST-induced cell motility is dependent upon the activities of the Rho family GTPases Cdc42 and RhoA. In addition, our results indicate that the MCPyV ST-PP4C interaction results in the dephosphorylation of ß1 integrin, likely driving the cell motility pathway. These findings describe a novel mechanism by which a tumor virus induces cell motility, which may ultimately lead to cancer metastasis, and provides opportunities and strategies for targeted interventions for disseminated MCC.IMPORTANCE Merkel cell polyomavirus (MCPyV) is the most recently discovered human tumor virus. It causes the majority of cases of Merkel cell carcinoma (MCC), an aggressive skin cancer. However, the molecular mechanisms implicating MCPyV-encoded proteins in cancer development are yet to be fully elucidated. This study builds upon our previous observations, which demonstrated that the MCPyV ST antigen enhances cell motility, providing a potential link between MCPyV protein expression and the highly metastatic nature of MCC. Here, we show that MCPyV ST remodels the actin cytoskeleton, promoting the formation of filopodia, which is essential for MCPyV ST-induced cell motility, and we also implicate the activity of specific Rho family GTPases, Cdc42 and RhoA, in these processes. Moreover, we describe a novel mechanism for the activation of Rho-GTPases and the cell motility pathway due to the interaction between MCPyV ST and the cellular phosphatase catalytic subunit PP4C, which leads to the specific dephosphorylation of ß1 integrin. These findings may therefore provide novel strategies for therapeutic intervention for disseminated MCC.


Asunto(s)
Antígenos Virales de Tumores/inmunología , Movimiento Celular , Poliomavirus de Células de Merkel/fisiología , Seudópodos/metabolismo , Seudópodos/virología , Proteínas de Unión al GTP rho/metabolismo , Actinas/metabolismo , Antígenos Virales de Tumores/genética , Carcinoma de Células de Merkel/virología , Expresión Génica , Humanos , Proteínas de Microfilamentos/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Infecciones por Polyomavirus/virología , Unión Proteica , Infecciones Tumorales por Virus/virología
19.
Chemistry ; 25(27): 6823-6830, 2019 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-30882948

RESUMEN

Graphene-based materials exhibit outstanding physical properties and so are potentially applicable in a great variety of fields. Unlike their corresponding oxides, graphite and graphene are not prone to functionalization. Diels-Alder reactions are among the scarce reactions that they can occur without disrupting their conjugated sp2 systems. Herein, the reaction between graphite and 3,6-di(2-pyridyl)-1,2,4,5-tetrazine under different conditions affords several graphene-based materials consisting of dipyridylpyridazine-functionalized few-layer graphene, multilayer graphene and graphite, the sheets of which act as ligands for the grafting of a europium complex. These three materials show strong red emission under 365 nm UV radiation. Their emitting particles can be visualized by confocal microscopy. The rich coordination chemistry of dipyridylpyridazine ligands has potential novel properties for similarly functionalized graphene-based materials grafted with other metal complexes.

20.
BMC Vet Res ; 15(1): 445, 2019 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-31810466

RESUMEN

BACKGROUND: Oral vaccination with Mycobacterium bovis Bacille of Calmette and Guerin (BCG) has provided protection against M. bovis to badgers both experimentally and in the field. There is also evidence suggesting that the persistence of live BCG within the host is important for maintaining protection against TB. Here we investigated the capacity of badger inductive mucosal sites to absorb and maintain live BCG. The targeted mucosae were the oropharyngeal cavity (tonsils and sublingual area) and the small intestine (ileum). RESULTS: We showed that significant quantities of live BCG persisted within badger in tissues of vaccinated badgers for at least 8 weeks following oral vaccination with only very mild pathological features and induced the circulation of IFNγ-producing mononuclear cells. The uptake of live BCG by tonsils and drainage to retro-pharyngeal lymph nodes was repeatable in the animal group vaccinated by oropharyngeal instillation whereas those vaccinated directly in the ileum displayed a lower frequency of BCG detection in the enteric wall or draining mesenteric lymph nodes. No faecal excretion of live BCG was observed, including when BCG was delivered directly in the ileum. CONCLUSIONS: The apparent local loss of BCG viability suggests an unfavorable gastro-enteric environment for BCG in badgers, which should be taken in consideration when developing an oral vaccine for use in this species.


Asunto(s)
Administración Oral , Vacuna BCG/administración & dosificación , Mustelidae/microbiología , Mycobacterium bovis/aislamiento & purificación , Animales , Vacuna BCG/inmunología , Preparaciones de Acción Retardada , Heces/microbiología , Femenino , Íleon/microbiología , Interferón gamma/metabolismo , Ganglios Linfáticos/microbiología , Mycobacterium bovis/inmunología , Tuberculosis/microbiología , Tuberculosis/prevención & control , Tuberculosis/veterinaria , Vacunación/veterinaria
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda