Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Protein Sci ; 14(2): 284-91, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15659363

RESUMEN

We previously reported the construction of a family of reagentless fluorescent biosensor proteins by the structure-based design of conjugation sites for a single, environmentally sensitive small molecule dye, thus providing a mechanism for the transduction of ligand-induced conformational changes into a macroscopic fluorescence observable. Here we investigate the microscopic mechanisms that may be responsible for the macroscopic fluorescent changes in such Fluorescent Allosteric Signal Transduction (FAST) proteins. As case studies, we selected three individual cysteine mutations (F92C, D95C, and S233C) of Escherichia coli maltose binding protein (MBP) covalently labeled with a single small molecule fluorescent probe, N-((2-iodoacetoxy)ethyl)-N-methyl)amino-7-nitrobenz-2-oxa-1,3-diazole (NBD), each giving rise to a robust FAST protein with a distinct maltose-dependent fluorescence response. The fluorescence emission intensity, anisotropy, lifetime, and iodide-dependent fluorescence quenching were determined for each conjugate in the presence and absence of maltose. Structure-derived solvent accessible surface areas of the three FAST proteins are consistent with experimentally observed quenching data. The D95C protein exhibits the largest fluorescence change upon maltose binding. This mutant was selected for further characterization, and residues surrounding the fluorophore coupling site were mutagenized. Analysis of the resulting mutant FAST proteins suggests that specific hydrogen-bonding interactions between the fluorophore molecule and two tyrosine side-chains, Tyr171 and Tyr176, in the open state but not the closed, are responsible for the dramatic fluorescence response of this construct. Taken together these results provide insights that can be used in future design cycles to construct fluorescent biosensors that optimize signaling by engineering specific hydrogen bonds between a fluorophore and protein.


Asunto(s)
Proteínas Portadoras/química , Maltosa/química , Sitio Alostérico , Técnicas Biosensibles , Cisteína/química , Escherichia coli/metabolismo , Genes Reporteros , Histidina/química , Ligandos , Proteínas de Unión a Maltosa , Microscopía Fluorescente , Modelos Moleculares , Mutación , Conformación Proteica , Ingeniería de Proteínas , Transducción de Señal , Programas Informáticos , Espectrometría de Fluorescencia
2.
Protein Sci ; 11(11): 2655-75, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12381848

RESUMEN

Bacterial periplasmic binding proteins (bPBPs) are specific for a wide variety of small molecule ligands. bPBPs undergo a large, ligand-mediated conformational change that can be linked to reporter functions to monitor ligand concentrations. This mechanism provides the basis of a general system for engineering families of reagentless biosensors that share a common physical signal transduction functionality and detect many different analytes. We demonstrate the facility of designing optical biosensors based on fluorophore conjugates using 8 environmentally sensitive fluorophores and 11 bPBPs specific for diverse ligands, including sugars, amino acids, anions, cations, and dipeptides. Construction of reagentless fluorescent biosensors relies on identification of sites that undergo a local conformational change in concert with the global, ligand-mediated hinge-bending motion. Construction of cysteine mutations at these locations then permits site-specific coupling of environmentally sensitive fluorophores that report ligand binding as changes in fluorescence intensity. For 10 of the bPBPs presented in this study, the three-dimensional receptor structure was used to predict the location of reporter sites. In one case, a bPBP sensor specific for glutamic and aspartic acid was designed starting from genome sequence information and illustrates the potential for discovering novel binding functions in the microbial genosphere using bioinformatics.


Asunto(s)
Técnicas Biosensibles , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/metabolismo , Proteínas de Unión Periplasmáticas/química , Proteínas de Unión Periplasmáticas/metabolismo , Secuencia de Aminoácidos , Clonación Molecular , Genes Bacterianos , Glucosa/metabolismo , Humanos , Ligandos , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Molecular , Mutagénesis , Proteínas de Unión Periplasmáticas/genética , Unión Proteica , Conformación Proteica , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda