Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38577897

RESUMEN

BACKGROUND: Trio exome sequencing can be used to investigate congenital abnormalities identified on pregnancy ultrasound, but its use in an Australian context has not been assessed. AIMS: Assess clinical outcomes and changes in management after expedited genomic testing in the prenatal period to guide the development of a model for widespread implementation. MATERIALS AND METHODS: Forty-three prospective referrals for whole exome sequencing, including 40 trios (parents and pregnancy), two singletons and one duo were assessed in a tertiary hospital setting with access to a state-wide pathology laboratory. Diagnostic yield, turn-around time (TAT), gestational age at reporting, pregnancy outcome, change in management and future pregnancy status were assessed for each family. RESULTS: A clinically significant genomic diagnosis was made in 15/43 pregnancies (35%), with an average TAT of 12 days. Gestational age at time of report ranged from 16 + 5 to 31 + 6 weeks (median 21 + 3 weeks). Molecular diagnoses included neuromuscular and skeletal disorders, RASopathies and a range of other rare Mendelian disorders. The majority of families actively used the results in pregnancy decision making as well as in management of future pregnancies. CONCLUSIONS: Rapid second trimester prenatal genomic testing can be successfully delivered to investigate structural abnormalities in pregnancy, providing crucial guidance for current and future pregnancy management. The time-sensitive nature of this testing requires close laboratory and clinical collaboration to ensure appropriate referral and result communication. We found the establishment of a prenatal coordinator role and dedicated reporting team to be important facilitators. We propose this as a model for genomic testing in other prenatal services.

2.
Mol Vis ; 28: 257-268, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36284667

RESUMEN

Purpose: ADAMTSL4-associated ectopia lentis is a rare autosomal recessive condition that is primarily associated with crystalline lens displacement. However, the prevalence of other ocular and systemic manifestations of this condition is poorly understood. In this study, we summarize the ocular and systemic phenotypic spectrum of this condition. Methods: A cross-sectional case study series of four individuals with biallelic pathogenic or likely pathogenic ADAMTSL4 variants was performed alongside a literature review of individuals with ADAMTSL4-associated ectopia lentis on September 29, 2021. Ocular and systemic findings, complications, and genetic findings of all four individuals were collected and summarized. Results: The phenotypic spectrum across 91 individuals sourced from literature and four individuals from this case study series was highly variable. The main ocular phenotypes included ectopia lentis (95/95, 100%), ectopia lentis et pupillae (18/95, 19%), iris transillumination (13/95, 14%), iridodonesis (12/95, 13%), persistent pupillary membrane (12/95, 13%), and early-onset cataract or lens opacities (12/95, 13%). Anterior segment features other than ectopia lentis appeared to be exclusively associated with biallelic loss of function variants (p<0.001). Pupillary block glaucoma had a prevalence of 1%. Post-lensectomy complications included retinal detachment (6/41, 15%), elevated intraocular pressure (4/41, 10%), and aphakic glaucoma (1/41, 2%). Most individuals were not reported to have had systemic features (69/95, 73%). Conclusions: The clinical phenotype of ADAMTSL4-associated ectopia lentis was summarized and expanded. Clinicians should be aware of the varied ocular phenotype and the risks of retinal detachment, ocular hypertension, and glaucoma in the diagnosis and management of this condition.


Asunto(s)
Desplazamiento del Cristalino , Glaucoma , Desprendimiento de Retina , Humanos , Desplazamiento del Cristalino/complicaciones , Desplazamiento del Cristalino/genética , Desplazamiento del Cristalino/diagnóstico , Linaje , Estudios Transversales , Proteínas ADAMTS/genética , Fenotipo , Glaucoma/complicaciones , Glaucoma/genética
3.
Genet Med ; 23(6): 1125-1136, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33742171

RESUMEN

PURPOSE: Consanguineous couples are at increased risk of being heterozygous for the same autosomal recessive (AR) disorder(s), with a 25% risk of affected offspring as a consequence. Until recently, comprehensive preconception carrier testing (PCT) for AR disorders was unavailable in routine diagnostics. Here we developed and implemented such a test in routine clinical care. METHODS: We performed exome sequencing (ES) for 100 consanguineous couples. For each couple, rare variants that could give rise to biallelic variants in offspring were selected. These variants were subsequently filtered against a gene panel consisting of ~2,000 genes associated with known AR disorders (OMIM-based). Remaining variants were classified according to American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) guidelines, after which only likely pathogenic and pathogenic (class IV/V) variants, present in both partners, were reported. RESULTS: In 28 of 100 tested consanguineous couples (28%), likely pathogenic and pathogenic variants not previously known in the couple or their family were reported conferring 25% risk of affected offspring. CONCLUSION: ES-based PCT provides a powerful diagnostic tool to identify AR disease carrier status in consanguineous couples. Outcomes provided significant reproductive choices for a higher proportion of these couples than previous tests.


Asunto(s)
Exoma , Familia , Consanguinidad , Exoma/genética , Heterocigoto , Secuenciación del Exoma
4.
Prenat Diagn ; 40(8): 972-983, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32333414

RESUMEN

OBJECTIVE: The purpose of this study was to explore the diagnostic yield and clinical utility of trio-based rapid whole exome sequencing (rWES) in pregnancies of fetuses with a wide range of congenital anomalies detected by ultrasound imaging. METHODS: In this observational study, we analyzed the first 54 cases referred to our laboratory for prenatal rWES to support clinical decision making, after the sonographic detection of fetal congenital anomalies. The most common identified congenital anomalies were skeletal dysplasia (n = 20), multiple major fetal congenital anomalies (n = 17) and intracerebral structural anomalies (n = 7). RESULTS: A conclusive diagnosis was identified in 18 of the 54 cases (33%). Pathogenic variants were detected most often in fetuses with skeletal dysplasia (n = 11) followed by fetuses with multiple major fetal congenital anomalies (n = 4) and intracerebral structural anomalies (n = 3). A survey, completed by the physicians for 37 of 54 cases, indicated that the rWES results impacted clinical decision making in 68% of cases. CONCLUSIONS: These results suggest that rWES improves prenatal diagnosis of fetuses with congenital anomalies, and has an important impact on prenatal and peripartum parental and clinical decision making.


Asunto(s)
Anomalías Congénitas/diagnóstico , Anomalías Congénitas/genética , Secuenciación del Exoma , Ultrasonografía Prenatal , Anomalías Múltiples/diagnóstico , Anomalías Múltiples/genética , Adulto , Toma de Decisiones , Femenino , Feto/diagnóstico por imagen , Pruebas Genéticas/métodos , Humanos , Masculino , Embarazo , Diagnóstico Prenatal/métodos , Reproducibilidad de los Resultados , Adulto Joven
5.
Hum Mol Genet ; 25(5): 1031-41, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26740552

RESUMEN

With a combined carrier frequency of 1:200, heteroplasmic mitochondrial DNA (mtDNA) mutations cause human disease in ∼1:5000 of the population. Rapid shifts in the level of heteroplasmy seen within a single generation contribute to the wide range in the severity of clinical phenotypes seen in families transmitting mtDNA disease, consistent with a genetic bottleneck during transmission. Although preliminary evidence from human pedigrees points towards a random drift process underlying the shifting heteroplasmy, some reports describe differences in segregation pattern between different mtDNA mutations. However, based on limited observations and with no direct comparisons, it is not clear whether these observations simply reflect pedigree ascertainment and publication bias. To address this issue, we studied 577 mother-child pairs transmitting the m.11778G>A, m.3460G>A, m.8344A>G, m.8993T>G/C and m.3243A>G mtDNA mutations. Our analysis controlled for inter-assay differences, inter-laboratory variation and ascertainment bias. We found no evidence of selection during transmission but show that different mtDNA mutations segregate at different rates in human pedigrees. m.8993T>G/C segregated significantly faster than m.11778G>A, m.8344A>G and m.3243A>G, consistent with a tighter mtDNA genetic bottleneck in m.8993T>G/C pedigrees. Our observations support the existence of different genetic bottlenecks primarily determined by the underlying mtDNA mutation, explaining the different inheritance patterns observed in human pedigrees transmitting pathogenic mtDNA mutations.


Asunto(s)
ADN Mitocondrial/genética , Patrón de Herencia , Enfermedades Mitocondriales/genética , Modelos Genéticos , Mutación Puntual , Teorema de Bayes , Niño , Femenino , Humanos , Enfermedades Mitocondriales/patología , Linaje , Fenotipo , Polimorfismo de Longitud del Fragmento de Restricción , Sesgo de Publicación
6.
Hum Reprod ; 33(7): 1331-1341, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29850888

RESUMEN

STUDY QUESTION: Does germline selection (besides random genetic drift) play a role during the transmission of heteroplasmic pathogenic mitochondrial DNA (mtDNA) mutations in humans? SUMMARY ANSWER: We conclude that inheritance of mtDNA is mutation-specific and governed by a combination of random genetic drift and negative and/or positive selection. WHAT IS KNOWN ALREADY: mtDNA inherits maternally through a genetic bottleneck, but the underlying mechanisms are largely unknown. Although random genetic drift is recognized as an important mechanism, selection mechanisms are thought to play a role as well. STUDY DESIGN, SIZE, DURATION: We determined the mtDNA mutation loads in 160 available oocytes, zygotes, and blastomeres of five carriers of the m.3243A>G mutation, one carrier of the m.8993T>G mutation, and one carrier of the m.14487T>C mutation. PARTICIPANTS/MATERIALS, SETTING, METHODS: Mutation loads were determined in PGD samples using PCR assays and analysed mathematically to test for random sampling effects. In addition, a meta-analysis has been performed on mutation load transmission data in the literature to confirm the results of the PGD samples. MAIN RESULTS AND THE ROLE OF CHANCE: By applying the Kimura distribution, which assumes random mechanisms, we found that mtDNA segregations patterns could be explained by variable bottleneck sizes among all our carriers (moment estimates ranging from 10 to 145). Marked differences in the bottleneck size would determine the probability that a carrier produces offspring with mutations markedly different than her own. We investigated whether bottleneck sizes might also be influenced by non-random mechanisms. We noted a consistent absence of high mutation loads in all our m.3243A>G carriers, indicating non-random events. To test this, we fitted a standard and a truncated Kimura distribution to the m.3243A>G segregation data. A Kimura distribution truncated at 76.5% heteroplasmy has a significantly better fit (P-value = 0.005) than the standard Kimura distribution. For the m.8993T>G mutation, we suspect a skewed mutation load distribution in the offspring. To test this hypothesis, we performed a meta-analysis on published blood mutation levels of offspring-mother (O-M) transmission for the m.3243A>G and m.8993T>G mutations. This analysis revealed some evidence that the O-M ratios for the m.8993T>G mutation are different from zero (P-value <0.001), while for the m.3243A>G mutation there was little evidence that the O-M ratios are non-zero. Lastly, for the m.14487T>G mutation, where the whole range of mutation loads was represented, we found no indications for selective events during its transmission. LARGE SCALE DATA: All data are included in the Results section of this article. LIMITATIONS, REASON FOR CAUTION: The availability of human material for the mutations is scarce, requiring additional samples to confirm our findings. WIDER IMPLICATIONS OF THE FINDINGS: Our data show that non-random mechanisms are involved during mtDNA segregation. We aimed to provide the mechanisms underlying these selection events. One explanation for selection against high m.3243A>G mutation loads could be, as previously reported, a pronounced oxidative phosphorylation (OXPHOS) deficiency at high mutation loads, which prohibits oogenesis (e.g. progression through meiosis). No maximum mutation loads of the m.8993T>G mutation seem to exist, as the OXPHOS deficiency is less severe, even at levels close to 100%. In contrast, high mutation loads seem to be favoured, probably because they lead to an increased mitochondrial membrane potential (MMP), a hallmark on which healthy mitochondria are being selected. This hypothesis could provide a possible explanation for the skewed segregation pattern observed. Our findings are corroborated by the segregation pattern of the m.14487T>C mutation, which does not affect OXPHOS and MMP significantly, and its transmission is therefore predominantly determined by random genetic drift. Our conclusion is that mutation-specific selection mechanisms occur during mtDNA inheritance, which has implications for PGD and mitochondrial replacement therapy. STUDY FUNDING/COMPETING INTEREST(S): This work has been funded by GROW-School of Oncology and Developmental Biology. The authors declare no competing interests.


Asunto(s)
Blastómeros/metabolismo , ADN Mitocondrial/genética , Mutación de Línea Germinal , Oocitos/metabolismo , Adulto , ADN Mitocondrial/metabolismo , Femenino , Células Germinativas/metabolismo , Humanos , Masculino , Fosforilación Oxidativa
7.
J Med Genet ; 54(10): 693-697, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28668821

RESUMEN

BACKGROUND: Preimplantation genetic diagnosis (PGD) is a reproductive strategy for mitochondrial DNA (mtDNA) mutation carriers, strongly reducing their risk of affected offspring. Embryos either without the mutation or with mutation load below the phenotypic threshold are transferred to the uterus. Because of incidental heteroplasmy deviations in single blastomere and the relatively limited data available, we so far preferred relying on two blastomeres rather than one. Considering the negative effect of a two-blastomere biopsy protocol compared with a single-blastomere biopsy protocol on live birth delivery rate, we re-evaluated the error rate in our current dataset. METHODS: For the m.3243A>G mutation, sufficient embryos/blastomeres were available for a powerful analysis. The diagnostic error rate, defined as a potential false-negative result, based on a threshold of 15%, was determined in 294 single blastomeres analysed in 73 embryos of 9 female m.3243A>G mutation carriers. RESULTS: Only one out of 294 single blastomeres (0.34%) would have resulted in a false-negative diagnosis. False-positive diagnoses were not detected. CONCLUSION: Our findings support a single-blastomere biopsy PGD protocol for the m.3243A>G mutation as the diagnostic error rate is very low. As in the early preimplantation embryo no mtDNA replication seems to occur and the mtDNA is divided randomly among the daughter cells, we conclude this result to be independent of the specific mutation and therefore applicable to all mtDNA mutations.


Asunto(s)
Blastómeros , ADN Mitocondrial/genética , Pruebas Genéticas/métodos , Diagnóstico Preimplantación/métodos , Biopsia , Blastocisto , Errores Diagnósticos , Femenino , Heterocigoto , Humanos , Mutación , Embarazo
8.
J Med Genet ; 54(2): 73-83, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27450679

RESUMEN

BACKGROUND: Severe, disease-causing germline mitochondrial (mt)DNA mutations are maternally inherited or arise de novo. Strategies to prevent transmission are generally available, but depend on recurrence risks, ranging from high/unpredictable for many familial mtDNA point mutations to very low for sporadic, large-scale single mtDNA deletions. Comprehensive data are lacking for de novo mtDNA point mutations, often leading to misconceptions and incorrect counselling regarding recurrence risk and reproductive options. We aim to study the relevance and recurrence risk of apparently de novo mtDNA point mutations. METHODS: Systematic study of prenatal diagnosis (PND) and recurrence of mtDNA point mutations in families with de novo cases, including new and published data. 'De novo' based on the absence of the mutation in multiple (postmitotic) maternal tissues is preferred, but mutations absent in maternal blood only were also included. RESULTS: In our series of 105 index patients (33 children and 72 adults) with (likely) pathogenic mtDNA point mutations, the de novo frequency was 24.6%, the majority being paediatric. PND was performed in subsequent pregnancies of mothers of four de novo cases. A fifth mother opted for preimplantation genetic diagnosis because of a coexisting Mendelian genetic disorder. The mtDNA mutation was absent in all four prenatal samples and all 11 oocytes/embryos tested. A literature survey revealed 137 de novo cases, but PND was only performed for 9 (including 1 unpublished) mothers. In one, recurrence occurred in two subsequent pregnancies, presumably due to germline mosaicism. CONCLUSIONS: De novo mtDNA point mutations are a common cause of mtDNA disease. Recurrence risk is low. This is relevant for genetic counselling, particularly for reproductive options. PND can be offered for reassurance.


Asunto(s)
ADN Mitocondrial/genética , Enfermedades Genéticas Congénitas/diagnóstico , Herencia Materna/genética , Diagnóstico Prenatal , Adulto , Niño , Femenino , Asesoramiento Genético , Humanos , Masculino , Oocitos/metabolismo , Mutación Puntual/genética , Embarazo , Diagnóstico Preimplantación
9.
Genet Med ; 19(5): 583-592, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28492530

RESUMEN

PURPOSE: Whole-exome sequencing (WES) provides the possibility of genome-wide preconception carrier screening (PCS). Here, we propose a filter strategy to rapidly identify the majority of relevant pathogenic mutations. METHODS: Our strategy was developed using WES data from eight consanguineous and five fictive nonconsanguineous couples and was subsequently applied to 20 other fictive nonconsanguineous couples. Presumably pathogenic variants based on frequency and database annotations or generic characteristics and mutation type were selected in genes shared by the couple and in the female's X-chromosome. Unclassified variants were not included. RESULTS: This yielded an average of 29 (19-51) variants in genes shared by the consanguineous couples and 15 (6-30) shared by the nonconsanguineous couples. For X-linked variants, the numbers per female were 3 (1-5) and 1 (0-3), respectively. Remaining variants were verified manually. The majority were able to be quickly discarded, effectively leaving true pathogenic variants. CONCLUSION: We conclude that WES is applicable for PCS, both for consanguineous and nonconsanguineous couples, with the remaining number of variants being manageable in a clinical setting. The addition of gene panels for filtering was not favorable because it resulted in missing pathogenic variants. It is important to develop and continuously curate databases with pathogenic mutations to further increase the sensitivity of WES-based PCS.Genet Med advance online publication 27 October 2016.


Asunto(s)
Secuenciación del Exoma/métodos , Tamización de Portadores Genéticos/métodos , Consanguinidad , Femenino , Genes Ligados a X , Humanos , Masculino , Mutación , Padres
10.
J Pediatr ; 182: 371-374.e2, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28081892

RESUMEN

Whole-exome sequencing identified multiple genetic causes in 2 infants with heterogeneous disease. Three gene defects in the first patient explained all symptoms, but manifestations were overlapping (blended phenotype). Two gene defects in the second patient explained nonoverlapping symptoms (composite phenotype). Whole-exome sequencing rapidly and comprehensively resolves heterogeneous genetic disease.


Asunto(s)
Anomalías Congénitas/genética , Enfermedades Genéticas Congénitas/diagnóstico , Mutación , Análisis de Secuencia de ADN/métodos , Amidohidrolasas/genética , Hidrolasas de Éster Carboxílico/genética , Anomalías Congénitas/diagnóstico , Exoma/genética , Pruebas Genéticas/métodos , Genómica , Genotipo , Humanos , Lactante , Proteínas de la Membrana/genética , Proteínas Asociadas a Microtúbulos , Pruebas de Mutagenicidad , Fenotipo , Receptores de Péptidos/genética , Sensibilidad y Especificidad , Índice de Severidad de la Enfermedad
11.
Hum Reprod ; 32(3): 698-703, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28122886

RESUMEN

We report on the first PGD performed for the m.14487 T>C mitochondrial DNA (mtDNA) mutation in the MT-ND6 gene, associated with Leigh syndrome. The female carrier gave birth to a healthy baby boy at age 42. This case adds to the successes of PGD for mtDNA mutations.


Asunto(s)
ADN Mitocondrial/genética , Enfermedad de Leigh/diagnóstico , Mutación , Femenino , Humanos , Recién Nacido , Enfermedad de Leigh/genética , Masculino , Mitocondrias/genética , Linaje , Embarazo , Diagnóstico Preimplantación , Resultado del Tratamiento
12.
Mol Genet Metab ; 117(3): 300-12, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26725255

RESUMEN

Leigh syndrome is a progressive neurodegenerative disorder, affecting 1 in 40,000 live births. Most patients present with symptoms between the ages of three and twelve months, but adult onset Leigh syndrome has also been described. The disease course is characterized by a rapid deterioration of cognitive and motor functions, in most cases resulting in death due to respiratory failure. Despite the high genetic heterogeneity of Leigh syndrome, patients present with identical, symmetrical lesions in the basal ganglia or brainstem on MRI, while additional clinical manifestations and age of onset varies from case to case. To date, mutations in over 60 genes, both nuclear and mitochondrial DNA encoded, have been shown to cause Leigh syndrome, still explaining only half of all cases. In most patients, these mutations directly or indirectly affect the activity of the mitochondrial respiratory chain or pyruvate dehydrogenase complex. Exome sequencing has accelerated the discovery of new genes and pathways involved in Leigh syndrome, providing novel insights into the pathophysiological mechanisms. This is particularly important as no general curative treatment is available for this devastating disorder, although several recent studies imply that early treatment might be beneficial for some patients depending on the gene or process affected. Timely, gene-based personalized treatment may become an important strategy in rare, genetically heterogeneous disorders like Leigh syndrome, stressing the importance of early genetic diagnosis and identification of new genes/pathways. In this review, we provide a comprehensive overview of the most important clinical manifestations and genes/pathways involved in Leigh syndrome, and discuss the current state of therapeutic interventions in patients.


Asunto(s)
ADN Mitocondrial/genética , Enfermedad de Leigh/genética , Enfermedad de Leigh/terapia , Proteínas Mitocondriales/genética , Mutación , Adulto , Encéfalo/fisiopatología , Exoma , Femenino , Heterogeneidad Genética , Humanos , Enfermedad de Leigh/diagnóstico , Enfermedad de Leigh/fisiopatología , Imagen por Resonancia Magnética , Masculino , Atrofias Ópticas Hereditarias/diagnóstico , Atrofias Ópticas Hereditarias/genética , Atrofias Ópticas Hereditarias/fisiopatología , Atrofias Ópticas Hereditarias/terapia
13.
Genet Med ; 17(11): 843-53, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25719457

RESUMEN

Two proα1(IV) chains, encoded by COL4A1, form trimers that contain, in addition, a proα2(IV) chain encoded by COL4A2 and are the major component of the basement membrane in many tissues. Since 2005, COL4A1 mutations have been known as an autosomal dominant cause of hereditary porencephaly. COL4A1 and COL4A2 mutations have been reported with a broader spectrum of cerebrovascular, renal, ophthalmological, cardiac, and muscular abnormalities, indicated as "COL4A1 mutation-related disorders." Genetic counseling is challenging because of broad phenotypic variation and reduced penetrance. At the Erasmus University Medical Center, diagnostic DNA analysis of both COL4A1 and COL4A2 in 183 index patients was performed between 2005 and 2013. In total, 21 COL4A1 and 3 COL4A2 mutations were identified, mostly in children with porencephaly or other patterns of parenchymal hemorrhage, with a high de novo mutation rate of 40% (10/24). The observations in 13 novel families harboring either COL4A1 or COL4A2 mutations prompted us to review the clinical spectrum. We observed recognizable phenotypic patterns and propose a screening protocol at diagnosis. Our data underscore the importance of COL4A1 and COL4A2 mutations in cerebrovascular disease, also in sporadic patients. Follow-up data on symptomatic and asymptomatic mutation carriers are needed for prognosis and appropriate surveillance.


Asunto(s)
Colágeno Tipo IV/genética , Estudios de Asociación Genética , Mutación , Fenotipo , Alelos , Segmento Anterior del Ojo/anomalías , Encéfalo/patología , Hemorragia Cerebral/diagnóstico , Hemorragia Cerebral/genética , Estudios de Cohortes , Anomalías del Ojo/diagnóstico , Anomalías del Ojo/genética , Enfermedades Hereditarias del Ojo , Familia , Orden Génico , Sitios Genéticos , Genotipo , Humanos , Leucomalacia Periventricular/diagnóstico , Leucomalacia Periventricular/genética , Imagen por Resonancia Magnética/métodos , Linaje , Porencefalia/diagnóstico , Porencefalia/genética
14.
J Med Genet ; 50(2): 125-32, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23339111

RESUMEN

BACKGROUND: Mitochondrial or oxidative phosphorylation diseases are relatively frequent, multisystem disorders; in about 15% of cases they are caused by maternally inherited mitochondrial DNA (mtDNA) mutations. Because of the possible severity of the phenotype, the lack of effective treatment, and the high recurrence risk for offspring of carrier females, couples wish to prevent the transmission of these mtDNA disorders to their offspring. Prenatal diagnosis is problematic for several reasons, and concern the often poor correlation between mutation percentages and disease severity and the uncertainties about the representativeness of a fetal sample. A new option for preventing transmission of mtDNA disorders is preimplantation genetic diagnosis (PGD), which circumvents these problems by transferring an embryo below the threshold of clinical expression. METHODS: We present the data on nine PGD cycles in four female carriers of mitochondrial diseases: three mitochondrial encephalopathy, lactic acidosis and stroke-like episodes (MELAS) (m.3243A>G), and one Leigh (m.8993T>G). Our threshold for transfer after PGD is 15% for the m.3243A>G mutation and 30% for the m.8993T>G mutation. RESULTS: All four female carriers produced embryos eligible for transfer. The m.8993T>G mutation in oocytes/embryos showed more skewing than the m.3243A>G. In about 80% of the embryos the mutation load in the individual blastomeres was fairly constant (interblastomere differences <10%). However, in around 11% (in embryos with the m.3243A>G mutation only), the mutation load differed substantially (>15%) between blastomeres of a single embryo, mostly as a result of one outlier. The m.8993T>G carrier became pregnant and gave birth to a healthy son. CONCLUSIONS: PGD provides carriers of mtDNA mutations the opportunity to conceive healthy offspring.


Asunto(s)
Análisis Mutacional de ADN/métodos , ADN Mitocondrial/análisis , Enfermedades Mitocondriales/diagnóstico , Enfermedades Mitocondriales/genética , Diagnóstico Preimplantación/métodos , Adulto , Blastómeros/fisiología , ADN Mitocondrial/química , ADN Mitocondrial/genética , Embrión de Mamíferos , Femenino , Humanos , Masculino , Mutación , Oocitos/fisiología , Linaje , Embarazo , Cigoto/fisiología
15.
Handb Clin Neurol ; 194: 207-228, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36813314

RESUMEN

Mitochondrial diseases require customized approaches for reproductive counseling, addressing differences in recurrence risks and reproductive options. The majority of mitochondrial diseases is caused by mutations in nuclear genes and segregate in a Mendelian way. Prenatal diagnosis (PND) or preimplantation genetic testing (PGT) are available to prevent the birth of another severely affected child. In at least 15%-25% of cases, mitochondrial diseases are caused by mitochondrial DNA (mtDNA) mutations, which can occur de novo (25%) or be maternally inherited. For de novo mtDNA mutations, the recurrence risk is low and PND can be offered for reassurance. For maternally inherited, heteroplasmic mtDNA mutations, the recurrence risk is often unpredictable, due to the mitochondrial bottleneck. PND for mtDNA mutations is technically possible, but often not applicable given limitations in predicting the phenotype. Another option for preventing the transmission of mtDNA diseases is PGT. Embryos with mutant load below the expression threshold are being transferred. Oocyte donation is another safe option to prevent the transmission of mtDNA disease to a future child for couples who reject PGT. Recently, mitochondrial replacement therapy (MRT) became available for clinical application as an alternative to prevent the transmission of heteroplasmic and homoplasmic mtDNA mutations.


Asunto(s)
Enfermedades Mitocondriales , Embarazo , Femenino , Humanos , Enfermedades Mitocondriales/genética , ADN Mitocondrial/genética , Diagnóstico Prenatal , Mitocondrias/genética , Mutación
16.
Eur J Hum Genet ; 31(11): 1317-1322, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37280360

RESUMEN

Expanded carrier screening (ECS) entails a screening offer for multiple recessive disorders at the same time, and allows testing of individuals or couples regardless of ancestry or geographic origin. Children of consanguineous couples have a higher-than-average risk of manifesting autosomal recessive disorders. This study aims to contribute to the responsible implementation of ECS for consanguineous couples. Seven semi-structured interviews were conducted with consanguineous couples who had recently participated in Whole Exome Sequencing (WES)-based ECS at Maastricht University Medical Center (MUMC+), the Netherlands. The test offered at MUMC+ covers a large number of disease-related genes (~2000), including severe, relatively mild, early- and late-onset disorders. Respondents were interviewed about their views on, and experiences with participation in WES-based ECS. Overall, participation was experienced as worthwhile: it enabled respondents to make informed choices with regard to family planning as well as to take on the presumed parental responsibility to deliver their children as healthy as possible. Furthermore, our findings suggest that (1) true consent for having this test requires timely information about the possible implications of a positive test result for specific categories of findings, as well as about the success rates of the available reproductive options; (2) the clinical geneticist can play a pivotal part in informing participants as well as providing clear information about autosomal recessive inheritance; (3) more research is needed to explore what type of genetic risk information is considered 'meaningful' by participants and actually contributes to reproductive decision-making.


Asunto(s)
Padres , Conducta Social , Niño , Humanos , Consanguinidad , Países Bajos , Patrón de Herencia , Tamización de Portadores Genéticos , Pruebas Genéticas
17.
Biochim Biophys Acta Mol Basis Dis ; 1869(8): 166808, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37454773

RESUMEN

Ionic calcium (Ca2+) is a key messenger in signal transduction and its mitochondrial uptake plays an important role in cell physiology. This uptake is mediated by the mitochondrial Ca2+ uniporter (MCU), which is regulated by EMRE (essential MCU regulator) encoded by the SMDT1 (single-pass membrane protein with aspartate rich tail 1) gene. This work presents the genetic, clinical and cellular characterization of two patients harbouring SMDT1 variants and presenting with muscle problems. Analysis of patient fibroblasts and complementation experiments demonstrated that these variants lead to absence of EMRE protein, induce MCU subcomplex formation and impair mitochondrial Ca2+ uptake. However, the activity of oxidative phosphorylation enzymes, mitochondrial morphology and membrane potential, as well as routine/ATP-linked respiration were not affected. We hypothesize that the muscle-related symptoms in the SMDT1 patients result from aberrant mitochondrial Ca2+ uptake.


Asunto(s)
Canales de Calcio , Calcio , Humanos , Calcio/metabolismo , Canales de Calcio/genética , Canales de Calcio/metabolismo , Transporte Iónico , Mitocondrias/genética , Mitocondrias/metabolismo , Músculos/metabolismo
18.
Neurol Genet ; 7(2): e564, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33709034

RESUMEN

OBJECTIVE: We describe a third patient with brain small vessel disease 3 (BSVD3), being the first with a homozygous essential splice site variant in the COLGALT1 gene, with a more severe phenotype than the 2 children reported earlier. METHODS: Analysis of whole exome sequencing (WES) data of the child and parents was performed. We validated the missplicing of the homozygous variant using reverse transcription PCR and Sanger sequencing of the mRNA in a lymphocyte culture. RESULTS: The patient presented antenatally with porencephaly on ultrasound and MRI. Postnatally, he showed a severe developmental delay, refractory epilepsy, spastic quadriplegia, and a progressive hydrocephalus. WES revealed a homozygous canonical splice site variant NM_024656.3:c.625-2A>C. PCR and Sanger sequencing of the mRNA demonstrated that 2 cryptic splice sites are activated, causing a frameshift in the major transcript and in-frame deletion in a minor transcript. CONCLUSIONS: We report a third patient with biallelic pathogenic variants in COLGALT1, confirming the role of this gene in autosomal recessive BSVD3.

19.
Eur J Hum Genet ; 29(12): 1789-1795, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34426662

RESUMEN

In a Dutch non-consanguineous patient having mitochondrial encephalomyopathy with complex I and complex IV deficiency, whole exome sequencing revealed two compound heterozygous variants in SLIRP. SLIRP gene encodes a stem-loop RNA-binding protein that regulates mitochondrial RNA expression and oxidative phosphorylation (OXPHOS). A frameshift and a deep-intronic splicing variant reduced the amount of functional wild-type SLIRP RNA to 5%. Consequently, in patient fibroblasts, MT-ND1, MT-ND6, and MT-CO1 expression was reduced. Lentiviral transduction of wild-type SLIRP cDNA in patient fibroblasts increased MT-ND1, MT-ND6, and MT-CO1 expression (2.5-7.2-fold), whereas mutant cDNAs did not. A fourfold decrease of citrate synthase versus total protein ratio in patient fibroblasts indicated that the resulting reduced mitochondrial mass caused the OXPHOS deficiency. Transduction with wild-type SLIRP cDNA led to a 2.4-fold increase of this ratio and partly restored OXPHOS activity. This confirmed causality of the SLIRP variants. In conclusion, we report SLIRP variants as a novel cause of mitochondrial encephalomyopathy with OXPHOS deficiency.


Asunto(s)
Encefalomiopatías Mitocondriales/genética , Proteínas de Unión al ARN/genética , Células Cultivadas , Niño , Complejo I de Transporte de Electrón/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Fibroblastos/metabolismo , Genes Recesivos , Humanos , Masculino , Encefalomiopatías Mitocondriales/patología , Mutación , Proteínas de Unión al ARN/metabolismo
20.
J Neuromuscul Dis ; 6(2): 241-258, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31127727

RESUMEN

BACKGROUND: Neuromuscular disorders (NMDs) are clinically and genetically heterogeneous. Accurate molecular genetic diagnosis can improve clinical management, provides appropriate genetic counseling and testing of relatives, and allows potential therapeutic trials. OBJECTIVE: To establish the clinical utility of panel-based whole exome sequencing (WES) in NMDs in a population with children and adults with various neuromuscular symptoms. METHODS: Clinical exome sequencing, followed by diagnostic interpretation of variants in genes associated with NMDs, was performed in a cohort of 396 patients suspected of having a genetic cause with a variable age of onset, neuromuscular phenotype, and inheritance pattern. Many had previously undergone targeted gene testing without results. RESULTS: Disease-causing variants were identified in 75/396 patients (19%), with variants in the three COL6-genes (COL6A1, COL6A2 and COL6A3) as the most common cause of the identified muscle disorder, followed by variants in the RYR1 gene. Together, these four genes account for almost 25% of cases in whom a definite genetic cause was identified. Furthermore, likely pathogenic variants and/or variants of uncertain significance were identified in 95 of the patients (24%), in whom functional and/or segregation analysis should be used to confirm or reject the pathogenicity. In 18% of the cases with a disease-causing variant of which we received additional clinical information, we identified a genetic cause in genes of which the associated phenotypes did not match that of the patients. Hence, the advantage of panel-based WES is its unbiased approach. CONCLUSION: Whole exome sequencing, followed by filtering for NMD genes, offers an unbiased approach for the genetic diagnostics of NMD patients. This approach could be used as a first-tier test in neuromuscular disorders with a high suspicion of a genetic cause. With uncertain results, functional testing and segregation analysis are needed to complete the evidence.


Asunto(s)
Secuenciación del Exoma/métodos , Enfermedades Neuromusculares/diagnóstico , Enfermedades Neuromusculares/genética , Adolescente , Adulto , Anciano , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Adulto Joven
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda