RESUMEN
The IntAct molecular interaction database (https://www.ebi.ac.uk/intact) is a curated resource of molecular interactions, derived from the scientific literature and from direct data depositions. As of August 2021, IntAct provides more than one million binary interactions, curated by twelve global partners of the International Molecular Exchange consortium, for which the IntAct database provides a shared curation and dissemination platform. The IMEx curation policy has always emphasised a fine-grained data and curation model, aiming to capture the relevant experimental detail essential for the interpretation of the provided molecular interaction data. Here, we present recent curation focus and progress, as well as a completely redeveloped website which presents IntAct data in a much more user-friendly and detailed way.
Asunto(s)
Bases de Datos de Proteínas , Mapas de Interacción de Proteínas/genética , Programas Informáticos , Humanos , Mapeo de Interacción de Proteínas/métodosRESUMEN
Low-complexity domains (LCDs) of proteins have been shown to self-associate, and pathogenic mutations within these domains often drive the proteins into amyloid aggregation associated with disease. These domains may be especially susceptible to amyloidogenic mutations because they are commonly intrinsically disordered and function in self-association. The question therefore arises whether a search for pathogenic mutations in LCDs of the human proteome can lead to identification of other proteins associated with amyloid disease. Here, we take a computational approach to identify documented pathogenic mutations within LCDs that may favor amyloid formation. Using this approach, we identify numerous known amyloidogenic mutations, including several such mutations within proteins previously unidentified as amyloidogenic. Among the latter group, we focus on two mutations within the TRK-fused gene protein (TFG), known to play roles in protein secretion and innate immunity, which are associated with two different peripheral neuropathies. We show that both mutations increase the propensity of TFG to form amyloid fibrils. We therefore conclude that TFG is a novel amyloid protein and propose that the diseases associated with its mutant forms may be amyloidoses.
Asunto(s)
Proteínas Amiloidogénicas , Amiloidosis , Biología Computacional , Amiloide/genética , Amiloide/metabolismo , Proteínas Amiloidogénicas/genética , Amiloidosis/metabolismo , Amiloidosis/patología , Humanos , Mutación , Proteoma/genéticaRESUMEN
The Xenopus laevis embryo has been subjected to almost saturating screens for molecules specifically expressed in dorsal Spemann organizer tissue. In this study, we performed high-throughput RNA sequencing of ectodermal explants, called animal caps, which normally give rise to epidermis. We analyzed dissociated animal cap cells that, through sustained activation of MAPK, differentiate into neural tissue. We also microinjected mRNAs for Cerberus, Chordin, FGF8, BMP4, Wnt8, and Xnr2, which induce neural or other germ layer differentiations. The searchable database provided here represents a valuable resource for the early vertebrate cell differentiation. These analyses resulted in the identification of a gene present in frog and fish, which we call Bighead. Surprisingly, at gastrula, it was expressed in the Spemann organizer and endoderm, rather than in ectoderm as we expected. Despite the plethora of genes already mined from Spemann organizer tissue, Bighead encodes a secreted protein that proved to be a potent inhibitor of Wnt signaling in a number of embryological and cultured cell signaling assays. Overexpression of Bighead resulted in large head structures very similar to those of the well-known Wnt antagonists Dkk1 and Frzb-1. Knockdown of Bighead with specific antisense morpholinos resulted in embryos with reduced head structures, due to increased Wnt signaling. Bighead protein bound specifically to the Wnt coreceptor lipoprotein receptor-related protein 6 (Lrp6), leading to its removal from the cell surface. Bighead joins two other Wnt antagonists, Dkk1 and Angptl4, which function as Lrp6 endocytosis regulators. These results suggest that endocytosis plays a crucial role in Wnt signaling.
Asunto(s)
Endocitosis/fisiología , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/metabolismo , Proteínas Wnt/metabolismo , Vía de Señalización Wnt/fisiología , Proteína 4 Similar a la Angiopoyetina , Angiopoyetinas/genética , Angiopoyetinas/metabolismo , Animales , Endodermo/citología , Endodermo/metabolismo , Gástrula/citología , Gástrula/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/genética , Unión Proteica , Proteínas Wnt/genética , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevisRESUMEN
The International Molecular Exchange (IMEx) consortium is an international collaboration between major public interaction data providers to share literature-curation efforts and make a nonredundant set of protein interactions available in a single search interface on a common website (http://www.imexconsortium.org/). Common curation rules have been developed, and a central registry is used to manage the selection of articles to enter into the dataset. We discuss the advantages of such a service to the user, our quality-control measures and our data-distribution practices.
Asunto(s)
Bases de Datos de Proteínas , Mapeo de Interacción de Proteínas , Proteínas/metabolismo , Publicaciones Periódicas como Asunto , Unión Proteica , Proteínas/química , Control de CalidadRESUMEN
Down Syndrome cell adhesion molecule (Dscam) genes encode neuronal cell recognition proteins of the immunoglobulin superfamily. In Drosophila, Dscam1 generates 19,008 different ectodomains by alternative splicing of three exon clusters, each encoding half or a complete variable immunoglobulin domain. Identical isoforms bind to each other, but rarely to isoforms differing at any one of the variable immunoglobulin domains. Binding between isoforms on opposing membranes promotes repulsion. Isoform diversity provides the molecular basis for neurite self-avoidance. Self-avoidance refers to the tendency of branches from the same neuron (self-branches) to selectively avoid one another. To ensure that repulsion is restricted to self-branches, different neurons express different sets of isoforms in a biased stochastic fashion. Genetic studies demonstrated that Dscam1 diversity has a profound role in wiring the fly brain. Here we show how many isoforms are required to provide an identification system that prevents non-self branches from inappropriately recognizing each other. Using homologous recombination, we generated mutant animals encoding 12, 24, 576 and 1,152 potential isoforms. Mutant animals with deletions encoding 4,752 and 14,256 isoforms were also analysed. Branching phenotypes were assessed in three classes of neurons. Branching patterns improved as the potential number of isoforms increased, and this was independent of the identity of the isoforms. Although branching defects in animals with 1,152 potential isoforms remained substantial, animals with 4,752 isoforms were indistinguishable from wild-type controls. Mathematical modelling studies were consistent with the experimental results that thousands of isoforms are necessary to ensure acquisition of unique Dscam1 identities in many neurons. We conclude that thousands of isoforms are essential to provide neurons with a robust discrimination mechanism to distinguish between self and non-self during self-avoidance.
Asunto(s)
Moléculas de Adhesión Celular/química , Moléculas de Adhesión Celular/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Neuritas/metabolismo , Alelos , Empalme Alternativo , Animales , Encéfalo/citología , Encéfalo/metabolismo , Moléculas de Adhesión Celular/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Femenino , Masculino , Modelos Biológicos , Cuerpos Pedunculados/citología , Cuerpos Pedunculados/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Eliminación de Secuencia , Procesos EstocásticosRESUMEN
The Proteomics Standard Initiative Common QUery InterfaCe (PSICQUIC) specification was created by the Human Proteome Organization Proteomics Standards Initiative (HUPO-PSI) to enable computational access to molecular-interaction data resources by means of a standard Web Service and query language. Currently providing >150 million binary interaction evidences from 28 servers globally, the PSICQUIC interface allows the concurrent search of multiple molecular-interaction information resources using a single query. Here, we present an extension of the PSICQUIC specification (version 1.3), which has been released to be compliant with the enhanced standards in molecular interactions. The new release also includes a new reference implementation of the PSICQUIC server available to the data providers. It offers augmented web service capabilities and improves the user experience. PSICQUIC has been running for almost 5 years, with a user base growing from only 4 data providers to 28 (April 2013) allowing access to 151 310 109 binary interactions. The power of this web service is shown in PSICQUIC View web application, an example of how to simultaneously query, browse and download results from the different PSICQUIC servers. This application is free and open to all users with no login requirement (http://www.ebi.ac.uk/Tools/webservices/psicquic/view/main.xhtml).
Asunto(s)
Proteómica/normas , Programas Informáticos , InternetRESUMEN
Long-lived PFKFB3-expressing ß-cells are dysfunctional partly because of prevailing glycolysis that compromises metabolic coupling of insulin secretion. Their accumulation in type 2 diabetes (T2D) appears to be related to the loss of apoptotic competency of cell fitness competition that maintains islet function by favoring constant selection of healthy "winner" cells. To investigate how PFKFB3 can disguise the competitive traits of dysfunctional "loser" ß-cells, we analyzed the overlap between human ß-cells with bona fide "loser signature" across diabetes pathologies using the HPAP scRNA-seq and spatial transcriptomics of PFKFB3-positive ß-cells from nPOD T2D pancreata. The overlapping transcriptional profile of "loser" ß-cells was represented by down-regulated ribosomal biosynthesis and genes encoding for mitochondrial respiration. PFKFB3-positive "loser" ß-cells had the reduced expression of HLA class I and II genes. Gene-gene interaction analysis revealed that PFKFB3 rs1983890 can interact with the anti-apoptotic gene MAIP1 implicating positive epistasis as a mechanism for prolonged survival of "loser" ß-cells in T2D. Inhibition of PFKFB3 resulted in the clearance of dysfunctional "loser" ß-cells leading to restored glucose tolerance in the mouse model of T2D.
Asunto(s)
Diabetes Mellitus Tipo 2 , Metabolismo Energético , Epistasis Genética , Células Secretoras de Insulina , Fosfofructoquinasa-2 , Células Secretoras de Insulina/metabolismo , Animales , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Ratones , Fosfofructoquinasa-2/genética , Fosfofructoquinasa-2/metabolismo , Metabolismo Energético/genética , Masculino , Transcriptoma/genética , Apoptosis/genética , Ratones Endogámicos C57BLRESUMEN
Genome-wide yeast two-hybrid (Y2H) screens were conducted to elucidate the molecular functions of open reading frames (ORFs) encoded by murine γ-herpesvirus 68 (MHV-68). A library of 84 MHV-68 genes and gene fragments was generated in a Gateway entry plasmid and transferred to Y2H vectors. All possible pair-wise interactions between viral proteins were tested in the Y2H assay, resulting in the identification of 23 intra-viral protein-protein interactions (PPIs). Seventy percent of the interactions between viral proteins were confirmed by co-immunoprecipitation experiments. To systematically investigate virus-cellular protein interactions, the MHV-68 Y2H constructs were screened against a cellular cDNA library, yielding 243 viral-cellular PPIs involving 197 distinct cellar proteins. Network analyses indicated that cellular proteins targeted by MHV-68 had more partners in the cellular PPI network and were located closer to each other than expected by chance. Taking advantage of this observation, we scored the cellular proteins based on their network distances from other MHV-68-interacting proteins and segregated them into high (Y2H-HP) and low priority/not-scored (Y2H-LP/NS) groups. Significantly more genes from Y2H-HP altered MHV-68 replication when their expression was inhibited with siRNAs (53% of genes from Y2H-HP, 21% of genes from Y2H-LP/NS, and 16% of genes randomly chosen from the human PPI network; p<0.05). Enriched Gene Ontology (GO) terms in the Y2H-HP group included regulation of apoptosis, protein kinase cascade, post-translational protein modification, transcription from RNA polymerase II promoter, and IκB kinase/NFκB cascade. Functional validation assays indicated that PCBP1, which interacted with MHV-68 ORF34, may be involved in regulating late virus gene expression in a manner consistent with the effects of its viral interacting partner. Our study integrated Y2H screening with multiple functional validation approaches to create γ-herpes viral-viral and viral-cellular protein interaction networks.
Asunto(s)
Genes Virales , Genoma Viral , Estudio de Asociación del Genoma Completo/métodos , Infecciones por Herpesviridae/virología , Rhadinovirus/genética , Infecciones Tumorales por Virus/virología , Animales , ADN Viral/genética , Biblioteca de Genes , Células HEK293 , Infecciones por Herpesviridae/metabolismo , Interacciones Huésped-Patógeno/fisiología , Humanos , Ratones , Células 3T3 NIH , Mapas de Interacción de Proteínas , Análisis de Secuencia de ADN , Infecciones Tumorales por Virus/metabolismo , Técnicas del Sistema de Dos Híbridos , Proteínas Virales/metabolismo , Replicación ViralRESUMEN
Intrauterine infection/inflammation (IUI) is a frequent complication of pregnancy leading to preterm labor and fetal inflammation. How inflammation is modulated at the maternal-fetal interface is unresolved. We compared transcriptomics of amnion (a fetal tissue in contact with amniotic fluid) in a preterm Rhesus macaque model of IUI induced by lipopolysaccharide with human cohorts of chorioamnionitis. Bulk RNA sequencing (RNA-seq) amnion transcriptomic profiles were remarkably similar in both Rhesus and human subjects and revealed that induction of key labor-mediating genes such as IL1 and IL6 was dependent on nuclear factor κB (NF-κB) signaling and reversed by the anti-tumor necrosis factor (TNF) antibody Adalimumab. Inhibition of collagen biosynthesis by IUI was partially restored by Adalimumab. Interestingly, single-cell transcriptomics, flow cytometry, and immunohistology demonstrated that a subset of amnion mesenchymal cells (AMCs) increase CD14 and other myeloid cell markers during IUI both in the human and Rhesus macaque. Our data suggest that CD14+ AMCs represent activated AMCs at the maternal-fetal interface.
RESUMEN
The self-assembly of the Nucleocapsid protein (NCAP) of SARS-CoV-2 is crucial for its function. Computational analysis of the amino acid sequence of NCAP reveals low-complexity domains (LCDs) akin to LCDs in other proteins known to self-assemble as phase separation droplets and amyloid fibrils. Previous reports have described NCAP's propensity to phase-separate. Here we show that the central LCD of NCAP is capable of both, phase separation and amyloid formation. Within this central LCD we identified three adhesive segments and determined the atomic structure of the fibrils formed by each. Those structures guided the design of G12, a peptide that interferes with the self-assembly of NCAP and demonstrates antiviral activity in SARS-CoV-2 infected cells. Our work, therefore, demonstrates the amyloid form of the central LCD of NCAP and suggests that amyloidogenic segments of NCAP could be targeted for drug development.
Asunto(s)
Amiloide , COVID-19 , Proteínas de la Nucleocápside de Coronavirus , Humanos , Amiloide/metabolismo , Proteínas Amiloidogénicas , Proteínas de la Nucleocápside , Péptidos/química , Dominios Proteicos , SARS-CoV-2/metabolismoRESUMEN
Proteins including FUS, hnRNPA2, and TDP-43 reversibly aggregate into amyloid-like fibrils through interactions of their low-complexity domains (LCDs). Mutations in LCDs can promote irreversible amyloid aggregation and disease. We introduce a computational approach to identify mutations in LCDs of disease-associated proteins predicted to increase propensity for amyloid aggregation. We identify several disease-related mutations in the intermediate filament protein keratin-8 (KRT8). Atomic structures of wild-type and mutant KRT8 segments confirm the transition to a pleated strand capable of amyloid formation. Biochemical analysis reveals KRT8 forms amyloid aggregates, and the identified mutations promote aggregation. Aggregated KRT8 is found in Mallory-Denk bodies, observed in hepatocytes of livers with alcoholic steatohepatitis (ASH). We demonstrate that ethanol promotes KRT8 aggregation, and KRT8 amyloids co-crystallize with alcohol. Lastly, KRT8 aggregation can be seeded by liver extract from people with ASH, consistent with the amyloid nature of KRT8 aggregates and the classification of ASH as an amyloid-related condition.
Asunto(s)
Amiloide , Hígado , Amiloide/genética , Amiloide/metabolismo , Proteínas Amiloidogénicas/genética , Hepatocitos/metabolismo , Humanos , Hígado/metabolismo , Mutación , Dominios ProteicosRESUMEN
The SARS-CoV-2 Nucleoprotein (NCAP) functions in RNA packaging during viral replication and assembly. Computational analysis of its amino acid sequence reveals a central low-complexity domain (LCD) having sequence features akin to LCDs in other proteins known to function in liquid-liquid phase separation. Here we show that in the presence of viral RNA, NCAP, and also its LCD segment alone, form amyloid-like fibrils when undergoing liquid-liquid phase separation. Within the LCD we identified three 6-residue segments that drive amyloid fibril formation. We determined atomic structures for fibrils formed by each of the three identified segments. These structures informed our design of peptide inhibitors of NCAP fibril formation and liquid-liquid phase separation, suggesting a therapeutic route for Covid-19. ONE SENTENCE SUMMARY: Atomic structures of amyloid-driving peptide segments from SARS-CoV-2 Nucleoprotein inform the development of Covid-19 therapeutics.
RESUMEN
A wealth of molecular interaction data is available in the literature, ranging from large-scale datasets to a single interaction confirmed by several different techniques. These data are all too often reported either as free text or in tables of variable format, and are often missing key pieces of information essential for a full understanding of the experiment. Here we propose MIMIx, the minimum information required for reporting a molecular interaction experiment. Adherence to these reporting guidelines will result in publications of increased clarity and usefulness to the scientific community and will support the rapid, systematic capture of molecular interaction data in public databases, thereby improving access to valuable interaction data.
Asunto(s)
Bases de Datos de Proteínas/normas , Guías como Asunto , Almacenamiento y Recuperación de la Información/normas , Mapeo de Interacción de Proteínas/normas , Proteómica/normas , Investigación/normas , Humanos , InternacionalidadRESUMEN
Eukaryotic histone H3-H4 tetramers contain a putative copper (Cu2+) binding site at the H3-H3' dimerization interface with unknown function. The coincident emergence of eukaryotes with global oxygenation, which challenged cellular copper utilization, raised the possibility that histones may function in cellular copper homeostasis. We report that the recombinant Xenopus laevis H3-H4 tetramer is an oxidoreductase enzyme that binds Cu2+ and catalyzes its reduction to Cu1+ in vitro. Loss- and gain-of-function mutations of the putative active site residues correspondingly altered copper binding and the enzymatic activity, as well as intracellular Cu1+ abundance and copper-dependent mitochondrial respiration and Sod1 function in the yeast Saccharomyces cerevisiae The histone H3-H4 tetramer, therefore, has a role other than chromatin compaction or epigenetic regulation and generates biousable Cu1+ ions in eukaryotes.
Asunto(s)
Cobre/metabolismo , Histonas/química , Oxidorreductasas/química , Multimerización de Proteína , Animales , Biocatálisis , Dominio Catalítico/genética , Mutación con Ganancia de Función , Histonas/genética , Histonas/metabolismo , Mitocondrias/metabolismo , Proteínas Nucleares/metabolismo , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Superóxido Dismutasa-1/química , Factores de Transcripción/metabolismo , Xenopus laevisRESUMEN
The International Molecular Exchange (IMEx) Consortium provides scientists with a single body of experimentally verified protein interactions curated in rich contextual detail to an internationally agreed standard. In this update to the work of the IMEx Consortium, we discuss how this initiative has been working in practice, how it has ensured database sustainability, and how it is meeting emerging annotation challenges through the introduction of new interactor types and data formats. Additionally, we provide examples of how IMEx data are being used by biomedical researchers and integrated in other bioinformatic tools and resources.
Asunto(s)
Acceso a la Información , Bases de Datos Genéticas , Humanos , Difusión de la Información , Cooperación InternacionalRESUMEN
UNLABELLED: The MiSink Plugin converts Cytoscape, an open-source bioinformatics platform for network visualization, to a graphical interface for the database of interacting proteins (DIP: http://dip.doe-mbi.ucla.edu). Seamless integration is possible by providing bi-directional communication between Cytoscape and any Web site supplying data in XML or tab-delimited format. AVAILABILITY: MiSink is freely available for download at http://dip.doe-mbi.ucla.edu/Software.cgi.
Asunto(s)
Gráficos por Computador , Sistemas de Administración de Bases de Datos , Bases de Datos de Proteínas , Almacenamiento y Recuperación de la Información/métodos , Mapeo de Interacción de Proteínas/métodos , Programas Informáticos , Interfaz Usuario-ComputadorRESUMEN
BACKGROUND: Molecular interaction Information is a key resource in modern biomedical research. Publicly available data have previously been provided in a broad array of diverse formats, making access to this very difficult. The publication and wide implementation of the Human Proteome Organisation Proteomics Standards Initiative Molecular Interactions (HUPO PSI-MI) format in 2004 was a major step towards the establishment of a single, unified format by which molecular interactions should be presented, but focused purely on protein-protein interactions. RESULTS: The HUPO-PSI has further developed the PSI-MI XML schema to enable the description of interactions between a wider range of molecular types, for example nucleic acids, chemical entities, and molecular complexes. Extensive details about each supported molecular interaction can now be captured, including the biological role of each molecule within that interaction, detailed description of interacting domains, and the kinetic parameters of the interaction. The format is supported by data management and analysis tools and has been adopted by major interaction data providers. Additionally, a simpler, tab-delimited format MITAB2.5 has been developed for the benefit of users who require only minimal information in an easy to access configuration. CONCLUSION: The PSI-MI XML2.5 and MITAB2.5 formats have been jointly developed by interaction data producers and providers from both the academic and commercial sector, and are already widely implemented and well supported by an active development community. PSI-MI XML2.5 enables the description of highly detailed molecular interaction data and facilitates data exchange between databases and users without loss of information. MITAB2.5 is a simpler format appropriate for fast Perl parsing or loading into Microsoft Excel.
Asunto(s)
Bases de Datos de Proteínas/normas , Procesamiento de Lenguaje Natural , Mapeo de Interacción de Proteínas/métodos , Proteómica/métodos , Biología Computacional , Gráficos por Computador , Sistemas de Administración de Bases de Datos , Proteómica/normas , Interfaz Usuario-ComputadorRESUMEN
The ever-increasing generation of, and corresponding interest in, molecular interaction data has lead to the establishment of a number of high-quality molecular interaction databases which manually curate interaction data extracted from the literature. In order to effectively share the curation load, and ensure that data is stored in and accessible from multiple sources, these databases have united to form the IMEx consortium. All of the IMEx databases also accept direct deposition of interaction data from authors prior to publication, thus both assisting the scientist in preparing the dataset for publication and ensuring that its subsequent representation in the public domain databases is fully accurate. This article walks the potential submitter through the various routes by which data may be deposited with the databases and describes the tools which have been developed to assist in this process.