Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Nature ; 576(7786): 262-265, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31723270

RESUMEN

Gigantopithecus blacki was a giant hominid that inhabited densely forested environments of Southeast Asia during the Pleistocene epoch1. Its evolutionary relationships to other great ape species, and the divergence of these species during the Middle and Late Miocene epoch (16-5.3 million years ago), remain unclear2,3. Hypotheses regarding the relationships between Gigantopithecus and extinct and extant hominids are wide ranging but difficult to substantiate because of its highly derived dentognathic morphology, the absence of cranial and post-cranial remains1,3-6, and the lack of independent molecular validation. We retrieved dental enamel proteome sequences from a 1.9-million-year-old G. blacki molar found in Chuifeng Cave, China7,8. The thermal age of these protein sequences is approximately five times greater than that of any previously published mammalian proteome or genome. We demonstrate that Gigantopithecus is a sister clade to orangutans (genus Pongo) with a common ancestor about 12-10 million years ago, implying that the divergence of Gigantopithecus from Pongo forms part of the Miocene radiation of great apes. In addition, we hypothesize that the expression of alpha-2-HS-glycoprotein, which has not been previously observed in enamel proteomes, had a role in the biomineralization of the thick enamel crowns that characterize the large molars in Gigantopithecus9,10. The survival of an Early Pleistocene dental enamel proteome in the subtropics further expands the scope of palaeoproteomic analysis into geographical areas and time periods previously considered incompatible with the preservation of substantial amounts of genetic information.


Asunto(s)
Hominidae/genética , Proteoma , Secuencia de Aminoácidos , Animales , Teorema de Bayes , Humanos , Filogenia , Factores de Tiempo
2.
Nature ; 574(7776): 103-107, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31511700

RESUMEN

The sequencing of ancient DNA has enabled the reconstruction of speciation, migration and admixture events for extinct taxa1. However, the irreversible post-mortem degradation2 of ancient DNA has so far limited its recovery-outside permafrost areas-to specimens that are not older than approximately 0.5 million years (Myr)3. By contrast, tandem mass spectrometry has enabled the sequencing of approximately 1.5-Myr-old collagen type I4, and suggested the presence of protein residues in fossils of the Cretaceous period5-although with limited phylogenetic use6. In the absence of molecular evidence, the speciation of several extinct species of the Early and Middle Pleistocene epoch remains contentious. Here we address the phylogenetic relationships of the Eurasian Rhinocerotidae of the Pleistocene epoch7-9, using the proteome of dental enamel from a Stephanorhinus tooth that is approximately 1.77-Myr old, recovered from the archaeological site of Dmanisi (South Caucasus, Georgia)10. Molecular phylogenetic analyses place this Stephanorhinus as a sister group to the clade formed by the woolly rhinoceros (Coelodonta antiquitatis) and Merck's rhinoceros (Stephanorhinus kirchbergensis). We show that Coelodonta evolved from an early Stephanorhinus lineage, and that this latter genus includes at least two distinct evolutionary lines. The genus Stephanorhinus is therefore currently paraphyletic, and its systematic revision is needed. We demonstrate that sequencing the proteome of Early Pleistocene dental enamel overcomes the limitations of phylogenetic inference based on ancient collagen or DNA. Our approach also provides additional information about the sex and taxonomic assignment of other specimens from Dmanisi. Our findings reveal that proteomic investigation of ancient dental enamel-which is the hardest tissue in vertebrates11, and is highly abundant in the fossil record-can push the reconstruction of molecular evolution further back into the Early Pleistocene epoch, beyond the currently known limits of ancient DNA preservation.


Asunto(s)
ADN Antiguo/análisis , Esmalte Dental/metabolismo , Fósiles , Perisodáctilos/clasificación , Perisodáctilos/genética , Filogenia , Proteoma/genética , Proteómica , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Teorema de Bayes , Historia Antigua , Humanos , Masculino , Perisodáctilos/metabolismo , Fosforilación/genética , Proteoma/análisis
3.
Mol Cell Proteomics ; 19(12): 2139-2157, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33020190

RESUMEN

Trypsin is the protease of choice in bottom-up proteomics. However, its application can be limited by the amino acid composition of target proteins and the pH of the digestion solution. In this study we characterize ProAlanase, a protease from the fungus Aspergillus niger that cleaves primarily on the C-terminal side of proline and alanine residues. ProAlanase achieves high proteolytic activity and specificity when digestion is carried out at acidic pH (1.5) for relatively short (2 h) time periods. To elucidate the potential of ProAlanase in proteomics applications, we conducted a series of investigations comprising comparative multi-enzymatic profiling of a human cell line proteome, histone PTM analysis, ancient bone protein identification, phosphosite mapping and de novo sequencing of a proline-rich protein and disulfide bond mapping in mAb. The results demonstrate that ProAlanase is highly suitable for proteomics analysis of the arginine- and lysine-rich histones, enabling high sequence coverage of multiple histone family members. It also facilitates an efficient digestion of bone collagen thanks to the cleavage at the C terminus of hydroxyproline which is highly prevalent in collagen. This allows to identify complementary proteins in ProAlanase- and trypsin-digested ancient bone samples, as well as to increase sequence coverage of noncollagenous proteins. Moreover, digestion with ProAlanase improves protein sequence coverage and phosphosite localization for the proline-rich protein Notch3 intracellular domain (N3ICD). Furthermore, we achieve a nearly complete coverage of N3ICD protein by de novo sequencing using the combination of ProAlanase and tryptic peptides. Finally, we demonstrate that ProAlanase is efficient in disulfide bond mapping, showing high coverage of disulfide-containing regions in a nonreduced mAb.


Asunto(s)
Disulfuros/metabolismo , Péptido Hidrolasas/metabolismo , Proteómica , Tripsina/metabolismo , Secuencia de Aminoácidos , Animales , Femenino , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , Mamuts , Paleontología , Péptido Hidrolasas/química , Fosforilación , Proteoma/metabolismo
4.
Angew Chem Int Ed Engl ; 57(25): 7369-7374, 2018 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-29603563

RESUMEN

Ahead of display, a non-original layer was observed on the surface of a fragment of a wall painting by Ambrogio Lorenzetti (active 1319, died 1348/9). FTIR analysis suggested proteinaceous content. Mass spectrometry was used to better characterise this layer and revealed two protein components: sheep and cow glue and chicken and duck egg white. Analysis of post-translational modifications detected several photo-oxidation products, which suggest that the egg experienced prolonged exposure to UV light and was likely applied long before the glue layer. Additionally, glycation products detected may indicate naturally occurring glycoprotein degradation or reaction with a carbohydrate material such as starch, identified by ATR-FTIR in a cross-section of a sample taken from the painting. Palaeoproteomics is shown to provide detailed characterisation of organic layers associated with mural paintings and therefore aids reconstruction of the conservation history of these objects.

5.
Metabolism ; 152: 155760, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38104923

RESUMEN

AIMS/HYPOTHESIS: Anorexia Nervosa (AN) is a severe psychiatric disorder of an unknown etiology with a crude mortality rate of about 5 % per decade, making it one of the deadliest of all psychiatric illnesses. AN is broadly classified into two main subtypes, restricting and binge/purging disorder. Despite extensive research efforts during several decades, the underlying pathophysiology of AN remains poorly understood. In this study, we aimed to identify novel protein biomarkers for AN by performing a proteomics analysis of fasting plasma samples from 78 females with AN (57 restrictive and 21 binge/purge type) and 70 healthy controls. METHODS: Using state-of-the-art mass spectrometry-based proteomics technology in conjunction with an advanced bioinformatics pipeline, we quantify >500 plasma proteins. RESULTS: Differential expression analysis and correlation of proteomics data with clinical variables led to identification of a panel of novel protein biomarkers with potential pathophysiological significance for AN. Our findings demonstrate evidence of a humoral immune system response, altered lipid metabolism and potential alteration of plasma cells in AN patients. Additionally, we stratified AN patients based on the quantified proteins and suggest a potential autoimmune nature in the restrictive subtype of AN. CONCLUSIONS/INTERPRETATION: In summary, on top of biomarkers of AN subtypes, this study provides a comprehensive map of plasma proteins that constitute a resource for further studies of the pathophysiology of AN.


Asunto(s)
Anorexia Nerviosa , Femenino , Humanos , Proteoma , Ayuno , Proteínas Sanguíneas , Biomarcadores
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda