RESUMEN
BACKGROUND: Despite the success of tamoxifen since its introduction, about one-third of patients with estrogen (ER) and/or progesterone receptor (PgR) - positive breast cancer (BC) do not benefit from therapy. Here, we aim to identify molecular mechanisms and protein biomarkers involved in tamoxifen resistance. RESULTS: Using iTRAQ and Immobilized pH gradient-isoelectric focusing (IPG-IEF) mass spectrometry based proteomics we compared tumors from 12 patients with early relapses (<2 years) and 12 responsive to therapy (relapse-free > 7 years). A panel of 13 proteins (TCEAL4, AZGP1, S100A10, ALDH6A1, AHNAK, FBP1, S100A4, HSP90AB1, PDXK, GFPT1, RAB21, MX1, CAPS) from the 3101 identified proteins, potentially separate relapse from non-relapse BC patients. The proteins in the panel are involved in processes such as calcium (Ca(2+)) signaling, metabolism, epithelial mesenchymal transition (EMT), metastasis and invasion. Validation of the highest expressed proteins in the relapse group identify high tumor levels of CAPS as predictive of tamoxifen response in a patient cohort receiving tamoxifen as only adjuvant therapy. CONCLUSIONS: This data implicate CAPS in tamoxifen resistance and as a potential predictive marker.
RESUMEN
About one-third of oestrogen receptor alpha-positive breast cancer patients treated with tamoxifen relapse. Here we identify the nuclear receptor retinoic acid receptor alpha as a marker of tamoxifen resistance. Using quantitative mass spectrometry-based proteomics, we show that retinoic acid receptor alpha protein networks and levels differ in a tamoxifen-sensitive (MCF7) and a tamoxifen-resistant (LCC2) cell line. High intratumoural retinoic acid receptor alpha protein levels also correlate with reduced relapse-free survival in oestrogen receptor alpha-positive breast cancer patients treated with adjuvant tamoxifen solely. A similar retinoic acid receptor alpha expression pattern is seen in a comparable independent patient cohort. An oestrogen receptor alpha and retinoic acid receptor alpha ligand screening reveals that tamoxifen-resistant LCC2 cells have increased sensitivity to retinoic acid receptor alpha ligands and are less sensitive to oestrogen receptor alpha ligands compared with MCF7 cells. Our data indicate that retinoic acid receptor alpha may be a novel therapeutic target and a predictive factor for oestrogen receptor alpha-positive breast cancer patients treated with adjuvant tamoxifen.