Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
1.
Int Endod J ; 57(8): 1147-1164, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38687284

RESUMEN

AIM: The aim of current study is the development and optimization of biodegradable polymeric nanoparticles (NPs) to be used in the field of Endodontics as intracanal medication in cases of avulsed teeth with extended extra-oral time, utilizing PLGA polymers loaded with the anti-inflammatory drug clobetasol propionate (CP). METHODOLOGY: CP-loaded nanoparticles (CP-NPs) were prepared using the solvent displacement method. CP release profile from CP-NPs was assessed for 48 h against free CP. Using extracted human teeth, the degree of infiltration inside the dentinal tubules was studied for both CP-NPs and CP. The anti-inflammatory capacity of CP-NPs was evaluated in vitro measuring their response and reaction against inflammatory cells, in particular against macrophages. The enzyme-linked immunosorbent assay (ELISA) was used to examine the cytokine release of IL-1ß and TNF-α. RESULTS: Optimized CP-NPs displayed an average size below 200 nm and a monomodal population. Additionally, spherical morphology and non-aggregation of CP-NPs were confirmed by transmission electron microscopy. Interaction studies showed that CP was encapsulated inside the NPs and no covalent bonds were formed. Moreover, CP-NPs exhibited a prolonged and steady release with only 21% of the encapsulated CP released after 48 h. Using confocal laser scanning microscopy, it was observed that CP-NPs were able to display enhanced penetration into the dentinal tubules. Neither the release of TNF-α nor IL-1ß increased in CP-NPs compared to the LPS control, displaying results similar and even less than the TCP after 48 h. Moreover, IL-1ß release in LPS-stimulated cells, decreased when macrophages were treated with CP-NPs. CONCLUSIONS: In the present work, CP-NPs were prepared, optimized and characterized displaying significant increase in the degree of infiltration inside the dentinal tubules against CP and were able to significantly reduce TNF-α release. Therefore, CP-NPs constitute a promising therapy for the treatment of avulsed teeth with extended extra-oral time.


Asunto(s)
Clobetasol , Nanopartículas , Nanopartículas/química , Humanos , Clobetasol/administración & dosificación , Antiinflamatorios/farmacología , Antiinflamatorios/administración & dosificación , Ensayo de Inmunoadsorción Enzimática , Irrigantes del Conducto Radicular/farmacología , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Interleucina-1beta/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Microscopía Electrónica de Transmisión
2.
Int Endod J ; 57(7): 907-921, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38374518

RESUMEN

AIM: Design, produce and assess the viability of a novel nanotechnological antibacterial thermo-sensible intracanal medicament This involves encapsulating calcium hydroxide (Ca(OH)2) within polylactic-co-glycolic acid (PLGA) nanoparticles (NPs) and dispersing them in a thermosensitive gel (Ca(OH)2-NPs-gel). In addition, perform in vitro and ex vivo assessments to evaluate tissue irritation and penetration capacity into dentinal tubules in comparison to free Ca(OH)2. METHODOLOGY: Reproducibility of Ca(OH)2-NPs was confirmed by obtaining the average size of the NPs, their polydispersity index, zeta potential and entrapment efficiency. Moreover, rheological studies of Ca(OH)2-NPs-gel were carried out with a rheometer, studying the oscillatory stress sweep, the mean viscosity value, frequency and temperature sweeps. Tolerance was assessed using the membrane of an embryonated chicken egg. In vitro Ca(OH)2 release was studied by direct dialysis in an aqueous media monitoring the amount of Ca(OH)2 released. Six extracted human teeth were used to study the depth of penetration of fluorescently labelled Ca(OH)2-NPs-gel into the dentinal tubules and significant differences against free Ca(OH)2 were calculated using one-way anova. RESULTS: Ca(OH)2-NPs-gel demonstrated to be highly reproducible with an average size below 200 nm, a homogeneous NPs population, negative surface charge and high entrapment efficiency. The analysis of the thermosensitive gel allowed us to determine its rheological characteristics, showing that at 10°C gels owned a fluid-like behaviour meanwhile at 37°C they owned an elastic-like behaviour. Ca(OH)2-NPs-gel showed a prolonged drug release and the depth of penetration inside the dentinal tubules increased in the most apical areas. In addition, it was found that this drug did not produce irritation when applied to tissues such as eggs' chorialantoidonic membrane. CONCLUSION: Calcium hydroxide-loaded PLGA NPs dispersed in a thermosensitive gel may constitute a suitable alternative as an intracanal antibacterial medicament.


Asunto(s)
Hidróxido de Calcio , Nanopartículas , Hidróxido de Calcio/química , Nanopartículas/química , Humanos , Geles , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Animales , Irrigantes del Conducto Radicular/química , Temperatura , Técnicas In Vitro , Ácido Poliglicólico/química , Reología , Embrión de Pollo , Ácido Láctico/química , Dentina/efectos de los fármacos
3.
Antimicrob Agents Chemother ; 67(6): e0032823, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37184389

RESUMEN

Daptomycin is a last-resort antibiotic used for the treatment of infections caused by Gram-positive antibiotic-resistant bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA). Treatment failure is commonly linked to accumulation of point mutations; however, the contribution of single mutations to resistance and the mechanisms underlying resistance remain incompletely understood. Here, we show that a single nucleotide polymorphism (SNP) selected during daptomycin therapy inactivates the highly conserved ClpP protease and is causing reduced susceptibility of MRSA to daptomycin, vancomycin, and ß-lactam antibiotics as well as decreased expression of virulence factors. Super-resolution microscopy demonstrated that inactivation of ClpP reduced binding of daptomycin to the septal site and diminished membrane damage. In both the parental strain and the clpP strain, daptomycin inhibited the inward progression of septum synthesis, eventually leading to lysis and death of the parental strain while surviving clpP cells were able to continue synthesis of the peripheral cell wall in the presence of 10× MIC daptomycin, resulting in a rod-shaped morphology. To our knowledge, this is the first demonstration that synthesis of the outer cell wall continues in the presence of daptomycin. Collectively, our data provide novel insight into the mechanisms behind bacterial killing and resistance to this important antibiotic. Also, the study emphasizes that treatment with last-line antibiotics is selective for mutations that, like the SNP in clpP, favor antibiotic resistance over virulence gene expression.


Asunto(s)
Daptomicina , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Daptomicina/farmacología , Staphylococcus aureus/genética , Vancomicina/farmacología , Infecciones Estafilocócicas/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana
4.
Int J Mol Sci ; 24(8)2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37108400

RESUMEN

Among the extracellular vesicles, apoptotic bodies (ABs) are only formed during the apoptosis and perform a relevant role in the pathogenesis of different diseases. Recently, it has been demonstrated that ABs from human renal proximal tubular HK-2 cells, either induced by cisplatin or by UV light, can lead to further apoptotic death in naïve HK-2 cells. Thus, the aim of this work was to carry out a non-targeted metabolomic approach to study if the apoptotic stimulus (cisplatin or UV light) affects in a different way the metabolites involved in the propagation of apoptosis. Both ABs and their extracellular fluid were analyzed using a reverse-phase liquid chromatography-mass spectrometry setup. Principal components analysis showed a tight clustering of each experimental group and partial least square discriminant analysis was used to assess the metabolic differences existing between these groups. Considering the variable importance in the projection values, molecular features were selected and some of them could be identified either unequivocally or tentatively. The resulting pathways indicated that there are significant, stimulus-specific differences in metabolites abundancies that may propagate apoptosis to healthy proximal tubular cells; thus, we hypothesize that the share in apoptosis of these metabolites might vary depending on the apoptotic stimulus.


Asunto(s)
Cisplatino , Vesículas Extracelulares , Humanos , Cisplatino/farmacología , Rayos Ultravioleta , Metabolómica/métodos , Apoptosis
5.
Int J Mol Sci ; 24(18)2023 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-37762479

RESUMEN

Licochalcone A (Lico-A) is a flavonoid compound derived from the root of the Glycyrrhiza species, a plant commonly used in traditional Chinese medicine. While the Glycyrrhiza species has shown promise in treating various diseases such as cancer, obesity, and skin diseases due to its active compounds, the investigation of Licochalcone A's effects on the central nervous system and its potential application in Alzheimer's disease (AD) treatment have garnered significant interest. Studies have reported the neuroprotective effects of Lico-A, suggesting its potential as a multitarget compound. Lico-A acts as a PTP1B inhibitor, enhancing cognitive activity through the BDNF-TrkB pathway and exhibiting inhibitory effects on microglia activation, which enables mitigation of neuroinflammation. Moreover, Lico-A inhibits c-Jun N-terminal kinase 1, a key enzyme involved in tau phosphorylation, and modulates the brain insulin receptor, which plays a role in cognitive processes. Lico-A also acts as an acetylcholinesterase inhibitor, leading to increased levels of the neurotransmitter acetylcholine (Ach) in the brain. This mechanism enhances cognitive capacity in individuals with AD. Finally, Lico-A has shown the ability to reduce amyloid plaques, a hallmark of AD, and exhibits antioxidant properties by activating the nuclear factor erythroid 2-related factor 2 (Nrf2), a key regulator of antioxidant defense mechanisms. In the present review, we discuss the available findings analyzing the potential of Lico-A as a neuroprotective agent. Continued research on Lico-A holds promise for the development of novel treatments for cognitive disorders and neurodegenerative diseases, including AD. Further investigations into its multitarget action and elucidation of underlying mechanisms will contribute to our understanding of its therapeutic potential.


Asunto(s)
Enfermedad de Alzheimer , Chalconas , Humanos , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Enfermedad de Alzheimer/tratamiento farmacológico , Acetilcolinesterasa , Chalconas/farmacología , Chalconas/uso terapéutico
6.
Int J Mol Sci ; 24(9)2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37175765

RESUMEN

Nanocarriers, and especially nanostructured lipid carriers (NLC), represent one of the most effective systems for topical drug administration. NLCs are biodegradable, biocompatible and provide a prolonged drug release. The glutamate release inhibitor Riluzole (RLZ) is a drug currently used for amyotrophic lateral sclerosis (ALS), with anti-proliferative effects potentially beneficial for diseases with excessive cell turnover. However, RLZ possesses low water solubility and high light-sensibility. We present here optimized NLCs loaded with RLZ (RLZ-NLCs) as a potential topical treatment. RLZ-NLCs were prepared by the hot-pressure homogenization method using active essential oils as liquid lipids, and optimized using the design of experiments approach. RLZ-NLCs were developed obtaining optimal properties for dermal application (mean size below 200 nm, negative surface charge and high RLZ entrapment efficacy). In vitro release study demonstrates that RLZ-NLCs allow the successful delivery of RLZ in a sustained manner. Moreover, RLZ-NLCs are not angiogenic and are able to inhibit keratinocyte cell proliferation. Hence, a NLCs delivery system loading RLZ in combination with natural essential oils constitutes a promising strategy against keratinocyte hyperproliferative conditions.


Asunto(s)
Nanopartículas , Nanoestructuras , Enfermedades de la Piel , Humanos , Riluzol/farmacología , Portadores de Fármacos , Enfermedades de la Piel/metabolismo , Liberación de Fármacos , Lípidos/farmacología , Tamaño de la Partícula , Piel/metabolismo
7.
J Chem Inf Model ; 62(19): 4620-4628, 2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-36130074

RESUMEN

The high price of marketing of extra virgin olive oil (EVOO) requires the introduction of cost-effective and sustainable procedures that facilitate its authentication, avoiding fraud in the sector. Contrary to classical techniques (such as chromatography), near-infrared (NIR) spectroscopy does not need derivatization of the sample with proper integration of separated peaks and is more reliable, rapid, and cost-effective. In this work, principal component analysis (PCA) and then redundancy analysis (RDA)─which can be seen as a constrained version of PCA─are used to summarize the high-dimensional NIR spectral information. Then PCA and RDA factors are contemplated as explanatory variables in models to authenticate oils from qualitative or quantitative analysis, in particular, in the prediction of the percentage of EVOO in blended oils or in the classification of EVOO or other vegetable oils (sunflower, hazelnut, corn, or linseed oil) by the use of some machine learning algorithms. As a conclusion, the results highlight the potential of RDA factors in prediction and classification because they appreciably improve the results obtained from PCA factors in calibration and validation.


Asunto(s)
Contaminación de Alimentos , Aceite de Linaza , Contaminación de Alimentos/análisis , Aceite de Linaza/análisis , Aceite de Oliva/análisis , Aceite de Oliva/química , Aceites de Plantas/análisis , Análisis de Componente Principal
8.
Int J Mol Sci ; 23(5)2022 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-35269743

RESUMEN

Age-related macular degeneration (AMD) is an eye disease typically associated with the aging and can be classified into two types-namely, the exudative and the nonexudative AMD. Currently available treatments for exudative AMD use intravitreal injections, which are associated with high risk of infection that can lead to endophthalmitis, while no successful treatments yet exist for the nonexudative form of AMD. In addition to the pharmacologic therapies administered by intravitreal injection already approved by the Food and Drug Administration (FDA) in exudative AMD, there are some laser treatments approved that can be used in combination with the pharmacological therapies. In this review, we discuss the latest developments of treatment options for AMD. Relevant literature available from 1993 was used, which included original articles and reviews available in PubMed database and also information collected from Clinical Trials Gov website using "age-related macular degeneration" and "antiangiogenic therapies" as keywords. The clinical trials search was limited to ongoing trials from 2015 to date.


Asunto(s)
Atrofia Geográfica , Degeneración Macular , Inhibidores de la Angiogénesis/uso terapéutico , Atrofia Geográfica/tratamiento farmacológico , Humanos , Inyecciones Intravítreas , Degeneración Macular/complicaciones , Degeneración Macular/tratamiento farmacológico
9.
Int J Mol Sci ; 23(19)2022 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-36232614

RESUMEN

The aim of this work was to design innovative nanostructured lipid carriers (NLCs) for the delivery of dexibuprofen (DXI) as an antiproliferative therapy against tumoral processes, and overcome its side effects. DXI-NLC samples were prepared with beeswax, Miglyol 812 and Tween 80 using high-pressure homogenization. A two-level factorial design 24 was applied to optimize the formulation, and physicochemical properties such as particle size, zeta potential, polydispersity index and entrapment efficiency were measured. Optimized parameters of DXI-NLCs exhibited a mean particle size of 152.3 nm, a polydispersity index below 0.2, and high DXI entrapment efficiency (higher than 99%). Moreover, DXI-NLCs provided a prolonged drug release, slower than the free DXI. DXI-NLCs were stable for 2 months and their morphology revealed that they possess a spherical shape. In vitro cytotoxicity and anticancer potential studies were performed towards prostate (PC-3) and breast (MDA-MB-468) cancer cell lines. The highest activity of DXI-NLCs was observed towards breast cancer cells, which were effectively inhibited at 3.4 µM. Therefore, DXI-NLCs constitute a promising antiproliferative therapy that has proven to be especially effective against breast cancer.


Asunto(s)
Neoplasias de la Mama , Nanoestructuras , Neoplasias de la Mama/tratamiento farmacológico , Portadores de Fármacos/química , Humanos , Ibuprofeno/análogos & derivados , Lípidos/química , Masculino , Nanoestructuras/química , Tamaño de la Partícula , Polisorbatos/uso terapéutico
10.
J Nanobiotechnology ; 19(1): 359, 2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34749747

RESUMEN

BACKGROUND: Acne is a common skin disorder that involves an infection inside the hair follicle, which is usually treated with antibiotics, resulting in unbalanced skin microbiota and microbial resistance. For this reason, we developed polymeric nanoparticles encapsulating thymol, a natural active compound with antimicrobial and antioxidant properties. In this work, optimization physicochemical characterization, biopharmaceutical behavior and therapeutic efficacy of this novel nanostructured system were assessed. RESULTS: Thymol NPs (TH-NP) resulted on suitable average particle size below 200 nm with a surface charge around - 28 mV and high encapsulation efficiency (80%). TH-NP released TH in a sustained manner and provide a slow-rate penetration into the hair follicle, being highly retained inside the skin. TH-NP possess a potent antimicrobial activity against Cutibacterium acnes and minor effect towards Staphylococcus epidermis, the major resident of the healthy skin microbiota. Additionally, the stability and sterility of developed NPs were maintained along storage. CONCLUSION: TH-NP showed a promising and efficient alternative for the treatment of skin acne infection, avoiding antibiotic administration, reducing side effects, and preventing microbial drug resistance, without altering the healthy skin microbiota. Additionally, TH-NP enhanced TH antioxidant activity, constituting a natural, preservative-free, approach for acne treatment.


Asunto(s)
Acné Vulgar/microbiología , Antibacterianos , Propionibacteriaceae/efectos de los fármacos , Timol , Antibacterianos/química , Antibacterianos/farmacocinética , Antibacterianos/farmacología , Antioxidantes/química , Antioxidantes/farmacocinética , Antioxidantes/farmacología , Línea Celular , Humanos , Pruebas de Sensibilidad Microbiana , Tamaño de la Partícula , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Piel/efectos de los fármacos , Piel/metabolismo , Piel/microbiología , Timol/química , Timol/farmacocinética , Timol/farmacología
11.
J Nanobiotechnology ; 19(1): 122, 2021 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-33926475

RESUMEN

Increasing life expectancy has led to an aging population, which has consequently increased the prevalence of dementia. Alzheimer's disease (AD), the most common form of dementia worldwide, is estimated to make up 50-80% of all cases. AD cases are expected to reach 131 million by 2050, and this increasing prevalence will critically burden economies and health systems in the next decades. There is currently no treatment that can stop or reverse disease progression. In addition, the late diagnosis of AD constitutes a major obstacle to effective disease management. Therefore, improved diagnostic tools and new treatments for AD are urgently needed. In this review, we investigate and describe both well-established and recently discovered AD biomarkers that could potentially be used to detect AD at early stages and allow the monitoring of disease progression. Proteins such as NfL, MMPs, p-tau217, YKL-40, SNAP-25, VCAM-1, and Ng / BACE are some of the most promising biomarkers because of their successful use as diagnostic tools. In addition, we explore the most recent molecular strategies for an AD therapeutic approach and nanomedicine-based technologies, used to both target drugs to the brain and serve as devices for tracking disease progression diagnostic biomarkers. State-of-the-art nanoparticles, such as polymeric, lipid, and metal-based, are being widely investigated for their potential to improve the effectiveness of both conventional drugs and novel compounds for treating AD. The most recent studies on these nanodevices are deeply explained and discussed in this review.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/tratamiento farmacológico , Biomarcadores/metabolismo , Nanomedicina/métodos , Envejecimiento , Enfermedad de Alzheimer/líquido cefalorraquídeo , Péptidos beta-Amiloides , Animales , Encéfalo , Sistemas de Liberación de Medicamentos , Humanos , Nanopartículas del Metal , Estrés Oxidativo
12.
Int Endod J ; 54(11): 2086-2098, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34355406

RESUMEN

AIM: To develop a formulation in which calcium hydroxide (Ca(OH)2) was successfully loaded into poly(lactic-co-glycolic acid) (PLGA) biodegradable nanoparticles (NPs) to be used in the field of endodontics as an intracanal medicament, including NP optimization and characterization, plus drug release profile of the NPs compared with free Ca(OH)2. Additionally, the depth and area of penetration of the NPs inside the dentinal tubules of extracted teeth were compared with those of the free Ca(OH)2. METHODOLOGY: Ca(OH)2 NPs were prepared using the solvent displacement method. NPs was optimized with a central composite design to obtain a final optimized formulation. The morphology of the NPs was examined under transmission electron microscopy (TEM), and characterization was carried out using X-ray diffraction (XRD), Fourier transform infrared (FTIR) and differential scanning calorimetry (DSC). The drug release profile of the Ca(OH)2 NPs and free Ca(OH)2 was evaluated up to 48 h. Finally, the depth and area of penetration inside the dentinal tubules of extracted teeth were examined for both the Ca(OH)2 NPs and free Ca(OH)2 using the Mann-Whitney U test to determine any significant differences. RESULTS: Utilizing the optimized formulation, the Ca(OH)2 NPs had an average size below 200 nm and polydispersity index lower than 0.2, along with a highly negative zeta potential and suitable entrapment efficiency percentage. The spherical morphology of the Ca(OH)2 NPs was confirmed using TEM. The results of the XRD, FTIR and DSC revealed no interactions and confirmed that the drug was encapsulated inside the NPs. The drug release profile of the Ca(OH)2 NPs exhibited a prolonged steady release that remained stable up to 48 h with higher concentrations than the free Ca(OH)2. After examination by confocal laser scanning microscopy, Ca(OH)2 NPs had a significantly greater depth and area of penetration inside dentinal tubules compared with the free drug. CONCLUSIONS: Ca(OH)2-loaded PLGA NPs were successfully optimized and characterized. The NPs exhibited a prolonged drug release profile and superior penetration inside dentinal tubules of extracted teeth when compared to Ca(OH)2 .


Asunto(s)
Nanopartículas , Ácido Poliglicólico , Hidróxido de Calcio , Ácido Láctico , Tamaño de la Partícula , Copolímero de Ácido Poliláctico-Ácido Poliglicólico
13.
Sensors (Basel) ; 21(8)2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33916989

RESUMEN

This work is aimed at describing the design of a mechanical and programmable 3D capturing system to be used by either 3D scanner or DSLR camera through photogrammetry. Both methods are widely used in diverse areas, from engineering, architecture or archaeology, up to the field of medicine; but they also entail certain disadvantages, such as the high costs of certain equipment, such as scanners with some precision, and the need to resort to specialized operatives, among others. The purpose of this design is to create a robust, precise and cost-effective system that improves the limitations of the present equipment on the market, such as robotic arms or rotary tables. For this reason, a preliminary study has been conducted to analyse the needs of improvement, later, we have focused on the 3D design and prototyping. For its construction, there have been used the FDM additive technology and structural components that are easy to find in the market. With regards to electronic components, basic electronics and Arduino-based 3D printers firmware have been selected. For system testing, the capture equipment consists of a Spider Artec 3D Scanner and a Nikon 5100 SLR Camera. Finally, 3D models have been developed by comparing the 3D meshes obtained by the two methods, obtaining satisfactory results.

14.
Int J Mol Sci ; 22(9)2021 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-34067151

RESUMEN

Research in the pathogenesis of inflammatory skin diseases, such as skin dermatitis and psoriasis, has experienced some relevant breakthroughs in recent years. The understanding of age-related factors, gender, and genetic predisposition of these multifactorial diseases has been instrumental for the development of new pharmacological and technological treatment approaches. In this review, we discuss the molecular mechanisms behind the pathological features of psoriasis, also addressing the currently available treatments and novel therapies that are under clinical trials. Innovative therapies developed over the last 10 years have been researched. In this area, advantages of nanotechnological approaches to provide an effective drug concentration in the disease site are highlighted, together with microneedles as innovative candidates for drug delivery systems in psoriasis and other inflammatory chronic skin diseases.


Asunto(s)
Nanomedicina , Psoriasis/etiología , Psoriasis/terapia , Animales , Ensayos Clínicos como Asunto , Humanos , Modelos Biológicos , Nanotecnología , Psoriasis/patología , Psoriasis/fisiopatología
15.
Int J Mol Sci ; 22(14)2021 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-34299017

RESUMEN

Oxygen deficiency in cells, tissues, and organs can not only prevent the proper development of biological functions but it can also lead to several diseases and disorders. In this sense, the kidney deserves special attention since hypoxia can be considered an important factor in the pathophysiology of both acute kidney injury and chronic kidney disease. To provide better knowledge to unveil the molecular mechanisms involved, new studies are necessary. In this sense, this work aims to study, for the first time, an in vitro model of hypoxia-induced metabolic alterations in human proximal tubular HK-2 cells because renal proximal tubules are particularly susceptible to hypoxia. Different groups of cells, cultivated under control and hypoxia conditions at 0.5, 5, 24, and 48 h, were investigated using untargeted metabolomic approaches based on reversed-phase liquid chromatography-mass spectrometry. Both intracellular and extracellular fluids were studied to obtain a large metabolite coverage. On the other hand, multivariate and univariate analyses were carried out to find the differences among the cell groups and to select the most relevant variables. The molecular features identified as affected metabolites were mainly amino acids and Amadori compounds. Insights about their biological relevance are also provided.


Asunto(s)
Hipoxia de la Célula , Cromatografía de Fase Inversa/métodos , Células Epiteliales/metabolismo , Túbulos Renales Proximales/metabolismo , Metabolómica/métodos , Espectrometría de Masas en Tándem/métodos , Activación Metabólica/genética , Activación Metabólica/fisiología , Hipoxia de la Célula/genética , Línea Celular , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Técnicas In Vitro , Riñón/citología , Riñón/metabolismo , Riñón/patología , Metaboloma/genética , Análisis Multivariante , Análisis de Componente Principal
16.
Pharm Dev Technol ; 26(5): 539-548, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33685334

RESUMEN

The synthesis of silver nanoparticles using plant extracts is known as a green approach, as it does not require the use of high pressure, energy, high temperature, or toxic chemicals. The approach makes use of plant extracts in a process called bioreduction, which is mediated by enzymes, proteins, amino acids, and metabolites found in bark, seed, and leaf extracts, transforming silver ions into metallic silver. This work aimed at developing silver nanoparticles (AgNPs) from Brazilian pepper, applying this green methodology. Hydroalcoholic extract of leaves of Schinus terebinthifolius Raddi was prepared and its concentration of polyphenols, tannins, and saponins quantified. The produced nanoparticles were characterized by UV-Vis spectroscopy, thermogravimetric analysis (TG), dynamic light scattering (DLS), and zeta potential (ZP). AgNPs were formulated in sodium alginate hydrogels to obtain a nano-based semi-solid formulation for skin application. The obtained silver nanoparticles of mean size between 350 and 450 nm showed no cytotoxicity against L929 mouse fibroblasts within the concentration range of 0.025 mg/mL and 10 mg/mL. Schinus terebinthifolius Raddi was found to enhance microbial inhibition against the tested strains, especially against gram-negative bacteria. Its potential use as an alternative to overcome bacterial resistance can be expected.


Asunto(s)
Anacardiaceae/química , Nanopartículas del Metal , Extractos Vegetales/farmacología , Plata/química , Animales , Antibacterianos/administración & dosificación , Antibacterianos/farmacología , Antibacterianos/toxicidad , Línea Celular , Supervivencia Celular/efectos de los fármacos , Sinergismo Farmacológico , Dispersión Dinámica de Luz , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Bacterias Gramnegativas/efectos de los fármacos , Tecnología Química Verde/métodos , Hidrogeles , Ratones , Tamaño de la Partícula , Extractos Vegetales/administración & dosificación , Extractos Vegetales/toxicidad , Hojas de la Planta
17.
Entropy (Basel) ; 23(2)2021 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-33567715

RESUMEN

The last decades have been successively warmer at the Earth's surface. An increasing interest in climate variability is appearing, and many research works have investigated the main effects on different climate variables. Some of them apply complex networks approaches to explore the spatial relation between distinct grid points or stations. In this work, the authors investigate whether topological properties change over several years. To this aim, we explore the application of the horizontal visibility graph (HVG) approach which maps a time series into a complex network. Data used in this study include a 60-year period of daily mean temperature anomalies in several stations over the Iberian Peninsula (Spain). Average degree, degree distribution exponent, and global clustering coefficient were analyzed. Interestingly, results show that they agree on a lack of significant trends, unlike annual mean values of anomalies, which present a characteristic upward trend. The main conclusions obtained are that complex networks structures and nonlinear features, such as weak correlations, appear not to be affected by rising temperatures derived from global climate conditions. Furthermore, different locations present a similar behavior and the intrinsic nature of these signals seems to be well described by network parameters.

18.
J Nanobiotechnology ; 18(1): 156, 2020 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-33129333

RESUMEN

Infectious diseases kill over 17 million people a year, among which bacterial infections stand out. From all the bacterial infections, tuberculosis, diarrhoea, meningitis, pneumonia, sexual transmission diseases and nosocomial infections are the most severe bacterial infections, which affect millions of people worldwide. Moreover, the indiscriminate use of antibiotic drugs in the last decades has triggered an increasing multiple resistance towards these drugs, which represent a serious global socioeconomic and public health risk. It is estimated that 33,000 and 35,000 people die yearly in Europe and the United States, respectively, as a direct result of antimicrobial resistance. For all these reasons, there is an emerging need to find novel alternatives to overcome these issues and reduced the morbidity and mortality associated to bacterial infectious diseases. In that sense, nanotechnological approaches, especially smart polymeric nanoparticles, has wrought a revolution in this field, providing an innovative therapeutic alternative able to improve the limitations encountered in available treatments and capable to be effective by theirselves. In this review, we examine the current status of most dangerous human infections, together with an in-depth discussion of the role of nanomedicine to overcome the current disadvantages, and specifically the most recent and innovative studies involving polymeric nanoparticles against most common bacterial infections of the human body.


Asunto(s)
Antibacterianos/química , Infecciones Bacterianas/tratamiento farmacológico , Nanocápsulas/química , Polímeros/química , Animales , Antibacterianos/farmacología , Materiales Biomiméticos , Composición de Medicamentos , Humanos , Nanomedicina , Neisseria meningitidis , Piel/efectos de los fármacos
19.
Molecules ; 25(4)2020 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-32079306

RESUMEN

An untargeted metabolomics strategy using hydrophilic interaction chromatography-mass spectrometry (HILIC-MS) was developed in this work enabling the study of the coffee roasting process. Green coffee beans and coffee beans submitted to three different roasting degrees (light, medium, and strong) were analyzed. Chromatographic separation was carried out using water containing 10 mM ammonium formate with 0.2 % formic acid (mobile phase A) and acetonitrile containing 10 mM ammonium formate with 0.2 % formic acid (mobile phase B). A total of 93 molecular features were considered from which 31 were chosen as the most statistically significant using variable in the projection values. 13 metabolites were tentatively identified as potential biomarkers of the coffee roasting process using this metabolomic platform. Results obtained in this work were complementary to those achieved using orthogonal techniques such as reversed-phase liquid chromatography-mass spectrometry (RPLC-MS) and capillary electrophoresis-mass spectrometry (CE-MS) since only one metabolite was found to be common between HILIC-MS and RPLC-MS platforms (caffeoylshikimic acid isomer) and other between HILIC-MS and CE-MS platforms (choline). On the basis of these results, an untargeted metabolomics multiplatform is proposed in this work based on the integration of the three orthogonal techniques as a powerful tool to expand the coverage of the roasted coffee metabolome.


Asunto(s)
Café/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Metabolómica , Análisis Discriminante , Análisis de los Mínimos Cuadrados , Metaboloma , Análisis de Componente Principal
20.
Molecules ; 25(3)2020 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-31991659

RESUMEN

Diabetic nephropathy is characterized by the chronic loss of kidney function due to high glucose renal levels. HK-2 proximal tubular cells are good candidates to study this disease. The aim of this work was to study an in vitro model of high glucose-induced metabolic alterations in HK-2 cells to contribute to the pathogenesis of this diabetic complication. An untargeted metabolomics strategy based on CE-MS was developed to find metabolites affected under high glucose conditions. Intracellular and extracellular fluids from HK-2 cells treated with 25 mM glucose (high glucose group), with 5.5 mM glucose (normal glucose group), and with 5.5 mM glucose and 19.5 mM mannitol (osmotic control group) were analyzed. The main changes induced by high glucose were found in the extracellular medium where increased levels of four amino acids were detected. Three of them (alanine, proline, and glutamic acid) were exported from HK-2 cells to the extracellular medium. Other affected metabolites include Amadori products and cysteine, which are more likely cause and consequence, respectively, of the oxidative stress induced by high glucose in HK-2 cells. The developed CE-MS platform provides valuable insight into high glucose-induced metabolic alterations in proximal tubular cells and allows identifying discriminative molecules of diabetic nephropathy.


Asunto(s)
Nefropatías Diabéticas/metabolismo , Glucosa/metabolismo , Túbulos Renales Proximales/metabolismo , Metabolómica , Modelos Biológicos , Línea Celular , Nefropatías Diabéticas/patología , Electroforesis Capilar , Glucosa/farmacología , Humanos , Túbulos Renales Proximales/patología , Espectrometría de Masas
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda