RESUMEN
Microplastic (MP) is an environmental burden and enters food webs via ingestion by macrofauna, including isopods (Porcellio scaber) in terrestrial ecosystems. Isopods represent ubiquitously abundant, ecologically important detritivores. However, MP-polymer specific effects on the host and its gut microbiota are unknown. We tested the hypothesis that biodegradable (polylactic acid [PLA]) and non-biodegradable (polyethylene terephthalate [PET]; polystyrene [PS]) MPs have contrasting effects on P. scaber mediated by changes of the gut microbiota. The isopod fitness after an 8-week MP-exposure was generally unaffected, although the isopods showed avoidance behaviour to PS-food. MP-polymer specific effects on gut microbes were detected, including a stimulation of microbial activity by PLA compared with MP-free controls. PLA stimulated hydrogen emission from isopod guts, while PET and PS were inhibitory. We roughly estimated 107 kg year-1 hydrogen emitted from the isopods globally and identified their guts as anoxic, significant mobile sources of reductant for soil microbes despite the absence of classical obligate anaerobes, likely due to Enterobacteriaceae-related fermentation activities that were stimulated by lactate generated during PLA-degradation. The findings suggest negative effects of PET and PS on gut fermentation, modulation of important isopod hydrogen emissions by MP pollution and the potential of MP to affect terrestrial food webs.
Asunto(s)
Isópodos , Microbiota , Animales , Isópodos/fisiología , Microplásticos/farmacología , Plásticos , Ingestión de Alimentos , PoliésteresRESUMEN
Measuring the distribution and dynamics of H2 in microbial electrochemical reactors is valuable to gain insights into the processes behind novel bioelectrochemical technologies, such as microbial electrosynthesis. Here, a microsensor method to measure and profile dissolved H2 concentrations in standard H-cell reactors is described. Graphite cathodes were oriented horizontally to enable the use of a motorized microprofiling system and a stereomicroscope was used to place the H2 microsensor precisely on the cathode surface. Profiling was performed towards the gas-liquid interface, while preserving the electric connections and flushing the headspace (to maintain anoxic conditions) and under strict temperature control (to overcome the temperature sensitivity of the microsensors). This method was tested by profiling six reactors, with and without inoculation of the acetogen Sporomusa ovata, at three different time points. H2 accumulated over time in the abiotic controls, while S. ovata maintained low H2 concentrations throughout the liquid phase (< 4 µM) during the whole experimental period. These results demonstrate that this setup generated insightful H2 profiles. However, various limitations of this microsensor method were identified, as headspace flushing lowered the dissolved H2 concentrations over time. Moreover, microsensors can likely not accurately measure H2 in the immediate vicinity of the solid cathode, because the solids cathode surface obstructs H2 diffusion into the microsensor. Finally, the reactors had to be discarded after microsensor profiling. Interested users should bear these considerations in mind when applying microsensors to characterize microbial electrochemical reactors.
Asunto(s)
Dióxido de Carbono , Dióxido de Carbono/química , ElectrodosRESUMEN
How species thrive in a wide range of environments is a major focus of evolutionary biology. For many species, limited genetic diversity or gene flow among habitats means that phenotypic plasticity must play an important role in their capacity to tolerate environmental heterogeneity and to colonize new habitats. However, we have a limited understanding of the molecular components that govern plasticity in ecologically relevant phenotypes. We examined this hypothesis in a spider species (Stegodyphus dumicola) with extremely low species-wide genetic diversity that nevertheless occupies a broad range of thermal environments. We determined phenotypic responses to temperature stress in individuals from four climatic zones using common garden acclimation experiments to disentangle phenotypic plasticity from genetic adaptations. Simultaneously, we created data sets on multiple molecular modalities: the genome, the transcriptome, the methylome, the metabolome, and the bacterial microbiome to determine associations with phenotypic responses. Analyses of phenotypic and molecular associations reveal that acclimation responses in the transcriptome and metabolome correlate with patterns of phenotypic plasticity in temperature tolerance. Surprisingly, genes whose expression seemed to be involved in plasticity in temperature tolerance were generally highly methylated contradicting the idea that DNA methylation stabilizes gene expression. This suggests that the function of DNA methylation in invertebrates varies not only among species but also among genes. The bacterial microbiome was stable across the acclimation period; combined with our previous demonstrations that the microbiome is temporally stable in wild populations, this is convincing evidence that the microbiome does not facilitate plasticity in temperature tolerance. Our results suggest that population-specific variation in temperature tolerance among acclimation temperatures appears to result from the evolution of plasticity in mainly gene expression.
Asunto(s)
Metilación de ADN , Transcriptoma , Animales , Aclimatación/genética , Arañas/genética , Arañas/fisiología , Termotolerancia/genética , Microbiota , Metaboloma , Adaptación Fisiológica/genética , Fenotipo , TemperaturaRESUMEN
Social arthropods such as termites, ants, and bees are among others the most successful animal groups on earth. However, social arthropods face an elevated risk of infections due to the dense colony structure, which facilitates pathogen transmission. An interesting hypothesis is that social arthropods are protected by chemical compounds produced by the arthropods themselves, microbial symbionts, or plants they associate with. Stegodyphus dumicola is an African social spider species, inhabiting communal silk nests. Because of the complex three-dimensional structure of the spider nest antimicrobial volatile organic compounds (VOCs) are a promising protection against pathogens, because of their ability to diffuse through air-filled pores. We analyzed the volatilomes of S. dumicola, their nests, and capture webs in three locations in Namibia and assessed their antimicrobial potential. Volatilomes were collected using polydimethylsiloxane (PDMS) tubes and analyzed using GC/Q-TOF. We showed the presence of 199 VOCs and tentatively identified 53 VOCs. More than 40% of the tentatively identified VOCs are known for their antimicrobial activity. Here, six VOCs were confirmed by analyzing pure compounds namely acetophenone, 1,3-benzothiazole, 1-decanal, 2-decanone, 1-tetradecene, and docosane and for five of these compounds the antimicrobial activity were proven. The nest and web volatilomes had many VOCs in common, whereas the spider volatilomes were more differentiated. Clear differences were identified between the volatilomes from the different sampling sites which is likely justified by differences in the microbiomes of the spiders and nests, the plants, and the different climatic conditions. The results indicate the potential relevance of the volatilomes for the ecological success of S. dumicola.
RESUMEN
Cable bacteria are filamentous members of the Desulfobulbaceae family that oxidize sulfide with oxygen or nitrate by transferring electrons over centimeter distances in sediments. Recent studies show that freshwater sediments can support populations of cable bacteria at densities comparable to those found in marine environments. This is surprising since sulfide availability is presumably low in freshwater sediments due to sulfate limitation of sulfate reduction. Here we show that cable bacteria stimulate sulfate reduction in freshwater sediment through promotion of sulfate availability. Comparing experimental freshwater sediments with and without active cable bacteria, we observed a three- to tenfold increase in sulfate concentrations and a 4.5-fold increase in sulfate reduction rates when cable bacteria were present, while abundance and community composition of sulfate-reducing microorganisms (SRM) were unaffected. Correlation and ANCOVA analysis supported the hypothesis that the stimulation of sulfate reduction activity was due to relieve of the kinetic limitations of the SRM community through the elevated sulfate concentrations in sediments with cable bacteria activity. The elevated sulfate concentration was caused by cable bacteria-driven sulfide oxidation, by sulfate production from an indigenous sulfide pool, likely through cable bacteria-mediated dissolution and oxidation of iron sulfides, and by enhanced retention of sulfate, triggered by an electric field generated by the cable bacteria. Cable bacteria in freshwater sediments may thus be an integral component of a cryptic sulfur cycle and provide a mechanism for recycling of the scarce resource sulfate, stimulating sulfate reduction. It is possible that this stimulation has implication for methanogenesis and greenhouse gas emissions.