Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
Int J Mol Sci ; 25(12)2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38928085

RESUMEN

An approach based on the heat stress and microbial stress model of the medicinal plant Sparganium stoloniferum was proposed to elucidate the regulation and mechanism of bioactive phenol accumulation. This method integrates LC-MS/MS analysis, 16S rRNA sequencing, RT-qPCR, and molecular assays to investigate the regulation of phenolic metabolite biosynthesis in S. stoloniferum rhizome (SL) under stress. Previous research has shown that the metabolites and genes involved in phenol biosynthesis correlate to the upregulation of genes involved in plant-pathogen interactions. High-temperature and the presence of Pseudomonas bacteria were observed alongside SL growth. Under conditions of heat stress or Pseudomonas bacteria stress, both the metabolites and genes involved in phenol biosynthesis were upregulated. The regulation of phenol content and phenol biosynthesis gene expression suggests that phenol-based chemical defense of SL is stimulated under stress. Furthermore, the rapid accumulation of phenolic substances relied on the consumption of amino acids. Three defensive proteins, namely Ss4CL, SsC4H, and SsF3'5'H, were identified and verified to elucidate phenol biosynthesis in SL. Overall, this study enhances our understanding of the phenol-based chemical defense of SL, indicating that bioactive phenol substances result from SL's responses to the environment and providing new insights for growing the high-phenol-content medicinal herb SL.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Respuesta al Choque Térmico , Plantas Medicinales , Plantas Medicinales/metabolismo , Fenoles/metabolismo , Fenol/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Rizoma/microbiología , Rizoma/metabolismo , Pseudomonas/metabolismo , Pseudomonas/genética , Espectrometría de Masas en Tándem , ARN Ribosómico 16S/genética
2.
Zhongguo Zhong Yao Za Zhi ; 46(4): 931-937, 2021 Feb.
Artículo en Zh | MEDLINE | ID: mdl-33645099

RESUMEN

Based on the characteristics and ISSR molecular marker technology, the study is aimed to compare and perform genetic diversity analysis on Sparganium stoloniferum from 7 regions. Molecular identification method was established for S. stoloniferum from Hunan province. Differences among Sparganii Rhizoma samples from seven habitats were analyzed via measuring weight, length, width and thickness of them. Genetic diversity of S. stoloniferum from 7 regions was analyzed by screening out primers amplifying clear band and showing rich polymorphism, then a cultivars dendrogram was built. The target primer was screened out, and the specific band was sequenced. Nine ISSR primers were selected to amplified clear band, rich polymorphism. A total of 73 bands were amplified by nine ISSR primers selected from 27 ISSR primers. On average, each primer produced 8.0 bands. A total of 38 bands were polymorphic, which occupied 52.8% of all bands. The cultivars dendrogram showed the genetic similarity was 0.54-0.94. Genetic similarity coefficient of S. stoloniferum from Jiangsu province, Anhui province and Jiangxi province was big, indicating the differences among them were slight on genetic level. S. stoloniferum from Hunan province is quite different from samples from the other six habitats on appea-rance and genetic level. A specific band(327 bp) in S. stoloniferum from Hunan province was obtained via ISSR-857 primer, and was sequenced. According BLASTn database, there were few sequences similar to the gene fragment and had little correlation with the growth process of plant. ISSR molecular marker technology provides a new idea for the identification of S. stoloniferum. This result confirmed the particularity of S. stoloniferum from ancient Jingzhou.


Asunto(s)
Medicamentos Herbarios Chinos , Variación Genética , Polimorfismo Genético , China , Marcadores Genéticos/genética , Repeticiones de Microsatélite , Filogenia
3.
Anal Biochem ; 578: 23-28, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30831099

RESUMEN

Most herbs of traditional Chinese medicine (TCM) are used as air-dried decoction pieces that are manufactured and kept at ambient temperature for long periods. Given the ability of some desiccation-tolerant plants to conserve RNA, it could be worthwhile to isolate mRNA from TCM decoction pieces as part of a transcriptomic strategy to identify new substances with potential pharmaceutical application. Here, we report the molecular cloning of a novel trypsin inhibitor (as the probable alleleic variants TKTI-2 and TKTI-3) from the decoction piece of Radix Trichosanthis, representing the dried root of Trichosanthes kirilowii. From this material, the total RNA was extracted and a cDNA library was constructed from the isolated mRNA from which the cDNAs of two precursors were successfully cloned and sequenced. TKTI-3 showed an amino-acid substitution in the otherwise highly-conserved P1-P1' reaction site of the mature peptide, which we confirmed to not be an artefact. Subsequent analysis using LC-MS/MS detected the presence of specific tryptic peptides expected from TKTI-3, confirming the presence and expression of this locus in Radix Trichosanthis. More generally, this study indicates that mRNA can persist in decoction pieces and so could present a viable option for the molecular cloning from other TCMs.


Asunto(s)
Medicamentos Herbarios Chinos/química , ARN/genética , Trichosanthes/metabolismo , Inhibidores de Tripsina/aislamiento & purificación , Clonación Molecular , Espectrometría de Masas en Tándem/métodos , Trichosanthes/genética
4.
Biochem Biophys Res Commun ; 495(4): 2539-2546, 2018 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-29191658

RESUMEN

A potent natural antimicrobial peptide named temporin-PE was identified and encoded from the skin secretions of Pelophylax kl. esculentus via "shotgun" cloning and LC-MS/MS fragmentation analysis. Target-modifications were carried out to further enhance the antimicrobial and anti-proliferative bioactivities, whilst decreasing the hemolytic effect. A range of bioassays demonstrated that replacing a proline with a tyrosine residue resulted in a loss of the bioactivity against Gram-negative bacteria, but dramatically improved the hemolytic and anti-proliferative activity, indicating the FLP- motif influences the hemolytic activity of temporins. Moreover, the coupling of TAT to the peptide dramatically improved its antimicrobial activity, indicating coupling TAT to these peptides could be considered as a potential tool to improve their antimicrobial activity. Overall, we have shown that targeted modifications of this natural antimicrobial peptide can adjust its bioactivities to help its development as an antibiotic or anti-proliferative agent.


Asunto(s)
Proteínas Anfibias/química , Péptidos Catiónicos Antimicrobianos/administración & dosificación , Péptidos Catiónicos Antimicrobianos/química , Fenómenos Fisiológicos Bacterianos/efectos de los fármacos , Rana esculenta/metabolismo , Piel/metabolismo , Secuencia de Aminoácidos , Proteínas Anfibias/administración & dosificación , Proteínas Anfibias/metabolismo , Animales , Antibacterianos/administración & dosificación , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Péptidos Catiónicos Antimicrobianos/metabolismo , Supervivencia Celular/efectos de los fármacos , Datos de Secuencia Molecular , Piel/microbiología
5.
Zhongguo Zhong Yao Za Zhi ; 42(17): 3391-3397, 2017 Sep.
Artículo en Zh | MEDLINE | ID: mdl-29192452

RESUMEN

A gas chromatography-mass spectrometry(GC-MS)method was established for the analysis of volatile components in Mentha haplocalyx, and seven principal components were quantified by gas chromatography(GC). Based on these analyses, the differences of volatile components in M. haplocalyx from Jiangsu, Anhui and other regions were compared. The results showed that the volatile oil of M. haplocalyx was divided into four chemical types:menthol-menthone type, pulegone-menthone type, piperitone-menthol type, piperitone epoxide type, and menthol-menthone type was the principal type. Menthol was the highest and pulegone was the lowest. The differences of M. haplocalyx from Anhui and other regions were obvious. The major volatile components and the differences of M. haplocalyx from different regions were confirmed and a quantitative method was established for the determination of volatile components, which provided the basis for improving the quality standard of M. haplocalyx.


Asunto(s)
Medicamentos Herbarios Chinos/normas , Mentha/química , Aceites Volátiles/química , Cromatografía de Gases y Espectrometría de Masas , Aceites de Plantas/química , Plantas Medicinales/química
6.
Front Plant Sci ; 13: 936244, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35968082

RESUMEN

Nepeta tenuifolia is a medicinal plant rich in terpenoids and flavonoids with antiviral, immunoregulatory, and anti-inflammatory activities. The peltate glandular trichome (PGT) is a multicellular structure considered to be the primary storage organ for monoterpenes; it may serve as an ideal model for studying cell differentiation and the development of glandular trichomes (GTs). The genes that regulate the development of GTs have not yet been well studied. In this study, we identified NtMIXTA1, a GT development-associated gene from the R2R3 MYB SBG9 family. NtMIXTA1 overexpression in tobacco resulted in the production of longer and denser GTs. Virus-induced gene silencing of NtMIXTA1 resulted in lower PGT density, a significant reduction in monoterpene concentration, and the decreased expression of genes related to monoterpene biosynthesis. Comparative transcriptome and widely targeted metabolic analyses revealed that silencing NtMIXTA1 significantly influenced the expression of genes, and the production of metabolites involved in the biosynthesis of terpenoids, flavonoids, and lipids. This study provides a solid foundation describing a mechanism underlying the regulation of GT development. In addition, this study further deepens our understanding of the regulatory networks involved in GT development and GT development-associated metabolite flux, as well as provides valuable reference data for studying plants with a high medicinal value without genetic transformation.

7.
Front Plant Sci ; 13: 850130, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35463413

RESUMEN

The aerial parts of Agastache rugosa are rich in essential oils containing monoterpenoids, phenylpropanoids, and aromatic compounds. These are used as herbs, perfume plants, and ornamental plants. Based on the difference in the constituents of the essential oil, A. rugosa is divided into pulegone and estragole chemotypes, but the mechanism of key metabolite biosynthesis in these two A. rugosa chemotypes remains unclear. In this study, we compared the morphological differences, metabolite constituents, and transcriptomic data between the two chemotypes of A. rugosa. Monoterpenoid was the main compound in the pulegone chemotype, and phenylpropanoid was the main compound in the estragole chemotype; however, limonene was detected in both chemotypes. Furthermore, 46 genes related to pulegone and estragole biosynthesis were identified. Limonene synthase, limonene-3-hydroxylase, and isopiperitenol dehydrogenase were upregulated in the pulegone chemotype, while phenylalanine ammonia-lyase, 4-coumarate: CoA ligase, CYP73A, coumaroyl-aldehyde dehydrogenase, and eugenol synthase were downregulated in the pulegone chemotype. We identified chavicol methyl transferase and limonene-3-hydroxylase in A. rugosa. This work not only provides the difference in morphology and metabolites in pulegone and estragole chemotypes, but also offers a molecular mechanism of volatile oil biosynthesis, which could be a basis for specialized metabolites in specialized chemotypes.

8.
Plant Physiol Biochem ; 167: 31-41, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34329843

RESUMEN

Nepeta tenuifolia Briq. (Lamiaceae) is a medicinal plant historically used in the East Asia region to treat cold and fever, and it is currently used as a clinically effective treatment for respiratory diseases. We previously found that monoterpenoids are the dominant volatile secondary metabolites in N. tenuifolia and their biosynthesis occurs in peltate glandular trichomes. To gain an insight into the molecular mechanisms underlying monoterpenoid biosynthesis in N. tenuifolia, we conducted transcriptome sequencing and examined the expression differences in monoterpene molecular pathway-related genes in different tissues and growth stages by qRT-RCR. In total, six p-menthane monoterpene biosynthetic genes in the (+)-menthone pathway were identified and cloned successfully based on transcriptome data. Moreover, the major constituents, including (+)-limonene, (-)-pulegone and (+)-menthone showed greater accumulation in the spikes than in other organs, such as the expression levels of related key enzyme genes. Additionally, the relative expression of pulegone reductase was the highest at 84 days, showing an inverse trend from (-)-pulegone relative content and leading to (+)-menthone accumulation in peltate glandular trichomes. Finished cloning of the gene for limonene 3-hydroxylase in N. tenuifolia (NtL3OH), heterologous expression in yeast, and in vitro assays were performed for functional characterization. Our study provides an important resource for further research of secondary metabolism of monoterpenes in peltate glandular trichomes of N. tenuifolia and other homologous species.


Asunto(s)
Lamiaceae , Nepeta , Lamiaceae/genética , Monoterpenos , RNA-Seq , Tricomas/genética
9.
Int Immunopharmacol ; 48: 102-109, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28499193

RESUMEN

Cardiac hypertrophy (CH), as one of the major causes of morbidity and mortality in the world, has become an independent and predictive risk factor for adverse cardiovascular events. However, progress in treatment remains sluggish in recent years. Therefore, compounds derived from non-toxic nature plants are urgently needed. Stachydrine (STA), which is isolated from Leonurus, has various activities, including resistance to cardiovascular disease, but little is known about its effect on CH or the mechanisms. We herein investigated the effect of STA on isoproterenol-induced CH and the underlying mechanisms. Treatment with STA significantly increased the ratios of heart weight/body weight, left ventricle weight/body weight and the cross-sectional areas of cardiomyocytes. In addition, STA significantly decreased the mRNA levels of atrial natriuretic peptide, B-type natriuretic peptide and ß-myosin heavy chain. Furthermore, isoproterenol-induced fibrosis in rats receiving STA was significant attenuated, as evidenced by decreased ratio of fibrotic area/total area and decreased mRNA levels of collagens I and III. Given down-regulation of interleukin-6, tumor necrosis factor-α, interferon-γ (IFN-γ) and IFN-1ß, treatment with STA significantly reversed the expressions of pro-inflammatory induced by isoproterenol. Moreover, STA attenuated the oxidative stress level in serum of isoproterenol-induced CH rats, as shown by increased activity of superoxide dismutase and decreased malondialdehyde level. STA inhibited the expressions of phosphorylated IκBα, NF-κB p65, JAK2 and STAT3 in vivo. Thus, both NF-κB and JAK/STAT signalings played essential roles in mediating the anti-CH effect of STA. Collectively, STA has a potent protective effect on isoproterenol-induced CH, with therapeutic implication for CH.


Asunto(s)
Antiinflamatorios , Antioxidantes , Cardiomegalia , Janus Quinasa 2/antagonistas & inhibidores , FN-kappa B/antagonistas & inhibidores , Prolina/análogos & derivados , Factor de Transcripción STAT3/antagonistas & inhibidores , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Cardiomegalia/sangre , Cardiomegalia/inducido químicamente , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/metabolismo , Citocinas/sangre , Isoproterenol , Janus Quinasa 2/metabolismo , Masculino , FN-kappa B/metabolismo , Estrés Oxidativo/efectos de los fármacos , Prolina/farmacología , Prolina/uso terapéutico , Ratas Sprague-Dawley , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda