Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Rep Prog Phys ; 87(10)2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39208840

RESUMEN

Gated first-passage processes, where completion depends on both hitting a target and satisfying additional constraints, are prevalent across various fields. Despite their significance, analytical solutions to basic problems remain unknown, e.g. the detection time of a diffusing particle by a gated interval, disk, or sphere. In this paper, we elucidate the challenges posed by continuous gated first-passage processes and present a renewal framework to overcome them. This framework offers a unified approach for a wide range of problems, including those with single-point, half-line, and interval targets. The latter have so far evaded exact solutions. Our analysis reveals that solutions to gated problems can be obtained directly from the ungated dynamics. This, in turn, reveals universal properties and asymptotic behaviors, shedding light on cryptic intermediate-time regimes and refining the notion of high-crypticity for continuous-space gated processes. Moreover, we extend our formalism to higher dimensions, showcasing its versatility and applicability. Overall, this work provides valuable insights into the dynamics of continuous gated first-passage processes and offers analytical tools for studying them across diverse domains.

2.
Chaos ; 31(11): 113131, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34881581

RESUMEN

Many natural and physical processes display long memory and extreme events. In these systems, the measured time series is invariably contaminated by noise and/or missing data. As the extreme events display a large deviation from the mean behavior, noise and/or missing data do not affect the extreme events as much as it affects the typical values. Since the extreme events also carry the information about correlations in the full-time series, we can use them to infer the correlation properties of the latter. In this work, we construct three modified time series using only the extreme events from a given time series. We show that the correlations in the original time series and in the modified time series are related, as measured by the exponent obtained from the detrended fluctuation analysis technique. Hence, the correlation exponents for a long memory time series can be inferred from its extreme events alone. We demonstrate this approach for several empirical time series.

3.
Chaos ; 30(4): 043111, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32357667

RESUMEN

Extreme events are emergent phenomena in multi-particle transport processes on complex networks. In practice, such events could range from power blackouts to call drops in cellular networks to traffic congestion on roads. All the earlier studies of extreme events on complex networks had focused only on the nodal events. If random walks are used to model the transport process on a network, it is known that degree of the nodes determines the extreme event properties. In contrast, in this work, it is shown that extreme events on the edges display a distinct set of properties from that of the nodes. It is analytically shown that the probability for the occurrence of extreme events on an edge is independent of the degree of the nodes linked by the edge and is dependent only on the total number of edges on the network and the number of walkers on it. Further, it is also demonstrated that non-trivial correlations can exist between the extreme events on the nodes and the edges. These results are in agreement with the numerical simulations on synthetic and real-life networks.

4.
Phys Rev Lett ; 118(17): 174101, 2017 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-28498690

RESUMEN

Quantum systems lose coherence upon interaction with the environment and tend towards classical states. Quantum coherence is known to exponentially decay in time so that macroscopic quantum superpositions are generally unsustainable. In this work, slower than exponential decay of coherences is experimentally realized in an atom-optics kicked rotor system subjected to nonstationary Lévy noise in the applied kick sequence. The slower coherence decay manifests in the form of quantum subdiffusion that can be controlled through the Lévy exponent. The experimental results are in good agreement with the analytical estimates and numerical simulations for the mean energy growth and momentum profiles of an atom-optics kicked rotor.

5.
R Soc Open Sci ; 11(7): 240809, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39021766

RESUMEN

Advancements in technology have recently allowed us to collect and analyse large-scale fine-grained data about human performance, drastically changing the way we approach sports. Here, we provide the first comprehensive analysis of individual and team performance in One-Day International cricket, one of the most popular sports in the world. We investigate temporal patterns of individual success by quantifying the location of the best performance of a player and find that they can happen at any time in their career, surrounded by a burst of comparable top performances. Our analysis shows that long-term performance can be predicted from early observations and that temporary exclusions of players from teams are often due to declining performances but are also associated with strong comebacks. By computing the duration of streaks of winning performances compared to random expectations, we demonstrate that teams win and lose matches consecutively. We define the contributions of specialists such as openers, all-rounders and wicket-keepers and show that a balanced performance from multiple individuals is required to ensure team success. Finally, we measure how transitioning to captaincy in the team improves the performance of batsmen, but not that of bowlers. Our work emphasizes how individual endeavours and team dynamics interconnect and influence collective outcomes in sports.

6.
Phys Rev E ; 109(3-1): 034206, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38632786

RESUMEN

Despite the periodic kicks, a linear kicked rotor (LKR) is an integrable and exactly solvable model in which the kinetic energy term is linear in momentum. It was recently shown that spatially interacting LKRs are also integrable, and results in dynamical localization in the corresponding quantum regime. Similar localized phases exist in other nonintegrable models such as the coupled relativistic kicked rotors. This work, using a two-body LKR, demonstrates two main results; first, it is shown that chaos can be induced in the integrable linear kicked rotor through interactions between the momenta of rotors. An analytical estimate of its Lyapunov exponent is obtained. Second, the quantum dynamics of this chaotic model, upon variation of kicking and interaction strengths, is shown to exhibit a variety of phases: classically induced localization, dynamical localization, subdiffusive, and diffusive phases. We point out the signatures of these phases from the perspective of entanglement production in this system. By defining an effective Hilbert space dimension, the entanglement growth rate can be understood using appropriate random matrix averages.

7.
Phys Rev E ; 108(4-1): 044208, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37978627

RESUMEN

Quantum directed transport can be realized in noninteracting, deterministic, chaotic systems by appropriately breaking the spatiotemporal symmetries in the potential. In this work, the focus is on the class of interacting two-body quantum systems whose classical limit is chaotic. It is shown that one subsystem effectively acts as a source of "noise" to the other leading to intrinsic temporal symmetry breaking. Then, the quantum directed currents, even if prohibited by symmetries in the composite system, can be realized in the subsystems. This current is of quantum origin and does not arise from semiclassical effects. This protocol provides a minimal framework-broken spatial symmetry in the potential and presence of interactions-for realizing directed transport in interacting chaotic systems. It is also shown that the magnitude of directed current undergoes multiple current reversals upon varying the interaction strength and this allows for controlling the currents. It is explicitly demonstrated in the two-body interacting kicked rotor model. The interaction-induced mechanism for subsystem directed currents would be applicable to other interacting quantum systems as well.

8.
Phys Rev E ; 108(3-1): 034307, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37849173

RESUMEN

Polarization of opinions has been empirically noted in many online social network platforms. Traditional models of opinion dynamics, based on statistical physics principles, do not account for the emergence of polarization and echo chambers in online network platforms. A recently introduced opinion dynamics model that incorporates the homophily factor-the tendency of agents to connect with those holding similar opinions as their own-captures polarization and echo chamber effects. In this work, we provide a nonintrusive framework for mildly nudging agents in an online community to form random connections. This is shown to lead to significant depolarization of opinions and decrease the echo chamber effects. Though a mild nudge effectively avoids polarization, overdoing this leads to another undesirable effect, namely, radicalization. Further, we obtain the optimal nudge probability to avoid the extremes of polarization and radicalization outcomes.

9.
Phys Rev E ; 105(1-1): 014315, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35193284

RESUMEN

Extreme events have low occurrence probabilities and display pronounced deviation from their average behavior, such as earthquakes or power blackouts. Such extreme events occurring on the nodes of a complex network have been extensively studied earlier through the modeling framework of unbiased random walks. They reveal that the occurrence probability for extreme events on nodes of a network has a strong dependence on the nodal properties. Apart from these, a recent work has shown the independence of extreme events on edges from those occurring on nodes. Hence, in this work, we propose a more general formalism to study the properties of extreme events arising from biased random walkers on the edges of a network. This formalism is applied to biases based on a variety network centrality measures including PageRank. It is shown that with biased random walkers as the dynamics on the network, extreme event probabilities depend on the local properties of the edges. The probabilities are highly variable for some edges of the network, while they are approximately a constant for some other edges on the same network. This feature is robust with respect to different biases applied to the random walk algorithm. Further, using the results from this formalism, it is shown that a network is far more robust to extreme events occurring on edges when compared to those occurring on the nodes.

10.
Phys Rev E ; 106(3-1): 034207, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36266807

RESUMEN

Atom-optics kicked rotor represents an experimentally reliable version of the paradigmatic quantum kicked rotor system. In this system, a periodic sequence of kicks are imparted to the cold atomic cloud. After a short initial diffusive phase the cloud settles down to a stationary state due to the onset of dynamical localization. In this paper, to explore the interplay between localized and diffusive phases, we experimentally implement a modification to this system in which the sign of the kick sequence is flipped after every M kicks. This is achieved in our experiment by allowing free evolution for half the Talbot time after every M kicks. Depending on the value of M, this modified system displays a combination of enhanced diffusion followed by asymptotic localization. This is explained as resulting from two competing processes-localization induced by standard kicked rotor type kicks, and diffusion induced by the half Talbot time evolution. The experimental and numerical simulations agree with one another. The evolving states display localized but nonexponential wave function profiles. This provides another route to quantum control in the kicked rotor class of systems.

11.
Phys Rev Lett ; 106(18): 188701, 2011 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-21635132

RESUMEN

A wide spectrum of extreme events ranging from traffic jams to floods take place on networks. Motivated by these, we employ a random walk model for transport and obtain analytical and numerical results for the extreme events on networks. They reveal an unforeseen, and yet a robust, feature: small degree nodes of a network are more likely to encounter extreme events than the hubs. Further, we also study the recurrence time distribution and scaling of the probabilities for extreme events. These results suggest a revision of design principles and can be used as an input for designing the nodes of a network so as to smoothly handle extreme events.

12.
Phys Rev E ; 104(5): L052103, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34942787

RESUMEN

The time taken by a random variable to cross a threshold for the first time, known as the first passage time, is of interest in many areas of sciences and engineering. Conventionally, there is an implicit assumption that the notional "sensor" monitoring the threshold crossing event is always active. In many realistic scenarios, the sensor monitoring the stochastic process works intermittently. Then, the relevant quantity of interest is the first detection time, which denotes the time when the sensor detects the random variable to be above the threshold for the first time. In this Letter, a birth-death process monitored by a random intermittent sensor is studied for which the first detection time distribution is obtained. In general, it is shown that the first detection time is related to and is obtainable from the first passage time distribution. Our analytical results display an excellent agreement with simulations. Furthermore, this framework is demonstrated in several applications-the susceptible infected susceptible compartmental and logistic models and birth-death processes with resetting. Finally, we solve the practically relevant problem of inferring the first passage time distribution from the first detection time.

13.
Phys Rev E ; 100(6-1): 060201, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31962514

RESUMEN

The dynamics of chaotic Hamiltonian systems such as the kicked rotor continues to guide our understanding of transport and localization processes. The localized states of the quantum kicked rotor decay due to decoherence effects if subjected to noise. The associated quantum diffusion increases monotonically as a function of a parameter characterizing the noise distribution. In this Rapid Communication, for the atom-optics Lévy kicked rotor, the quantum diffusion displays nonmonotonic behavior as a function of a parameter characterizing the Lévy distribution. The optimal diffusion rates are experimentally obtained using an ultracold cloud of rubidium atoms in a pulsed optical lattice. The parameters for optimal diffusion rates are obtained analytically and show a good agreement with our experimental and numerical results. The nonmonotonicity is shown to be a quantum effect that vanishes in the classical limit.

14.
Phys Rev E Stat Nonlin Soft Matter Phys ; 78(5 Pt 1): 051113, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19113101

RESUMEN

The distribution of recurrence times or return intervals between extreme events is important to characterize and understand the behavior of physical systems and phenomena in many disciplines. It is well known that many physical processes in nature and society display long-range correlations. Hence, in the last few years, considerable research effort has been directed towards studying the distribution of return intervals for long-range correlated time series. Based on numerical simulations, it was shown that the return interval distributions are of stretched exponential type. In this paper, we obtain an analytical expression for the distribution of return intervals in long-range correlated time series which holds good when the average return intervals are large. We show that the distribution is actually a product of power law and a stretched exponential form. We also discuss the regimes of validity and perform detailed studies on how the return interval distribution depends on the threshold used to define extreme events.

15.
Phys Rev E Stat Nonlin Soft Matter Phys ; 77(2 Pt 2): 026213, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18352109

RESUMEN

We study entanglement in a system comprising two coupled quartic oscillators. It is shown that the entanglement, as measured by the von Neumann entropy, increases with the classical chaos parameter for generic chaotic eigenstates. We consider certain isolated periodic orbits whose bifurcation sequence affects a class of strongly scarred quantum eigenstates, called the channel localized states. For these states, the entanglement is a local minima in the vicinity of a pitchfork bifurcation but is a local maxima near an antipitchfork bifurcation. We place these results in the context of the close connections that may exist between entanglement measures and conventional measures of localization. We also point to an interesting near degeneracy that arises in the spectrum of reduced density matrices of certain states as an interplay between localization and symmetry.

16.
Phys Rev E ; 97(3-1): 032217, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29776057

RESUMEN

It is well known that, in the chaotic regime, all the Floquet states of kicked rotor system display an exponential profile resulting from dynamical localization. If the kicked rotor is placed in an additional stationary infinite potential well, its Floquet states display power-law profile. It has also been suggested in general that the Floquet states of periodically kicked systems with singularities in the potential would have power-law profile. In this work, we study the Floquet states of a kicked particle in finite potential barrier. By varying the height of finite potential barrier, the nature of transition in the Floquet state from exponential to power-law decay profile is studied. We map this system to a tight-binding model and show that the nature of decay profile depends on energy band spanned by the Floquet states (in unperturbed basis) relative to the potential height. This property can also be inferred from the statistics of Floquet eigenvalues and eigenvectors. This leads to an unusual scenario in which the level spacing distribution, as a window in to the spectral correlations, is not a unique characteristic for the entire system.

17.
Phys Rev E ; 97(6-1): 062212, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30011473

RESUMEN

Typical eigenstates of quantum systems, whose classical limit is chaotic, are well approximated as random states. Corresponding eigenvalue spectra are modeled through an appropriate ensemble described by random matrix theory. However, a small subset of states violates this principle and displays eigenstate localization, a counterintuitive feature known to arise due to purely quantum or semiclassical effects. In the spectrum of chaotic systems, the localized and random states interact with one another and modify the spectral statistics. In this work, a 3×3 random matrix model is used to obtain exact results for the ratio of spacing between a generic and localized state. We consider time-reversal-invariant as well as noninvariant scenarios. These results agree with the spectra computed from realistic physical systems that display localized eigenmodes.

18.
Phys Rev E Stat Nonlin Soft Matter Phys ; 76(2 Pt 2): 026202, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17930116

RESUMEN

We show that two coupled map lattices that are mutually coupled to one another with a delay can display zero delay synchronization if they are driven by a third coupled map lattice. We analytically estimate the parametric regimes that lead to synchronization and show that the presence of mutual delays enhances synchronization to some extent. The zero delay or isochronal synchronization is reasonably robust against mismatches in the internal parameters of the coupled map lattices, and we analytically estimate the synchronization error bounds.

19.
Phys Rev E ; 95(1-1): 012216, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28208355

RESUMEN

Quantum correlations reflect the quantumness of a system and are useful resources for quantum information and computational processes. Measures of quantum correlations do not have a classical analog and yet are influenced by classical dynamics. In this work, by modeling the quantum kicked top as a multiqubit system, the effect of classical bifurcations on measures of quantum correlations such as the quantum discord, geometric discord, and Meyer and Wallach Q measure is studied. The quantum correlation measures change rapidly in the vicinity of a classical bifurcation point. If the classical system is largely chaotic, time averages of the correlation measures are in good agreement with the values obtained by considering the appropriate random matrix ensembles. The quantum correlations scale with the total spin of the system, representing its semiclassical limit. In the vicinity of trivial fixed points of the kicked top, the scaling function decays as a power law. In the chaotic limit, for large total spin, quantum correlations saturate to a constant, which we obtain analytically, based on random matrix theory, for the Q measure. We also suggest that it can have experimental consequences.

20.
Phys Rev E Stat Nonlin Soft Matter Phys ; 73(1 Pt 2): 015201, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16486205

RESUMEN

The fluctuations in the quantum spectrum could be treated like a time series. In this framework, we explore the statistical self-similarity in the quantum spectrum using the detrended fluctuation analysis (DFA) and random matrix theory (RMT). We calculate the Hausdorff measure for the spectra of atoms and Gaussian ensembles and study their self-affine properties. We show that DFA is equivalent to the Delta3 statistics of RMT, unifying two different approaches. We exploit this connection to obtain theoretical estimates for the Hausdorff measure.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda