Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Tipo del documento
Publication year range
1.
Artículo en Inglés | MEDLINE | ID: mdl-34512739

RESUMEN

BACKGROUND: Phoneutria nigriventer venom contains Phα1ß. This toxin and its recombinant form have a remarkable analgesic potential that is associated with blockage of voltage-gated calcium channels and TRPA1 receptors. Although morphine is a mainstay drug to treat moderate and severe pain related to cancer, it has serious and dose-limiting side effects. Combining recombinant Phα1ß and morphine to treat pain is an interesting approach that has been gaining attention. Therefore, a quantitative and reliable method to establish the strength of the antinociceptive interaction between these two substances is necessary. The present study was designed to investigate the nature of the functional antinociceptive (analgesic) interaction between Phα1ß recombinant toxin and morphine in a model of cancer pain. METHODS: Melanoma was produced by intraplantar inoculation of B16-F10 cells into the right paw of C57BL/6J mice. Von Frey filaments measured the paw-withdrawal threshold after intrathecal administration of morphine, recombinant Phα1ß, and their combination. Thermal hyperalgesia was assessed using Hargreaves apparatus. The degree of interaction was evaluated using isobolographic analysis. Spontaneous and forced motor performance was assessed with the open-field and rotarod tests, respectively. RESULTS: Co-administration of recombinant Phα1ß and morphine synergistically reverses the melanoma-induced mechanical hyperalgesia. The potency of the mixture, measured as the effective dose to reach 50% of maximum possible effect (MPE) in ameliorating mechanical hyperalgesia, was about twice fold higher than expected if the interaction between morphine and recombinant Phα1ß was merely additive. Treatment with the combination at doses necessary to reach 50% of MPE caused no spontaneous nor forced motor alterations. CONCLUSION: The combinatorial use of recombinant Phα1ß and morphine allows significant and effective dose reduction of both agents, which has translational potential for opioid-sparing approaches in pain management related to cancer.

2.
Biochem Pharmacol ; 182: 114210, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32882205

RESUMEN

TRPV1 is a cation channel expressed in peripheral nociceptive pathways and its activation can trigger nociception signals to the brain. Ketamine is an intravenous anesthetic routinely used for anesthesia induction and with potent analgesic activity. Despite its proven depressant action on peripheral sensory pathways, the relationship between ketamine and TRPV1 receptors is still unclear. In this study, we evaluated the effect of ketamine injected peripherally in a rat model of spontaneous pain induced by capsaicin. We also investigated the effect of ketamine on Ca2+ transients in cultured dorsal root ganglia (DRG) neurons and HEK293 cells expressing the TRPV1 receptor (HEK-TRPV1 cells). Intraplantar administration of ketamine caused an unexpected increase in nocifensive behavior induced by capsaicin. Incubation of HEK-TRPV1 cells with 10 µM ketamine increased TRPV1 and PKCє phosphorylation. Ketamine potentiated capsaicin-induced Ca2+ transients in HEK-TRPV1 cells and DRG neurons. Ketamine also prevented TRPV1 receptor desensitization induced by successive applications of capsaicin. єV1-2, a PKCє inhibitor, reduced potentiation of capsaicin-induced Ca2+ transients by ketamine. Taken together, our data indicate that ketamine potentiates TRPV1 receptor sensitivity to capsaicin through a mechanism dependent on PKCє activity.


Asunto(s)
Ketamina/administración & dosificación , Nocicepción/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Canales Catiónicos TRPV/agonistas , Canales Catiónicos TRPV/metabolismo , Animales , Capsaicina/administración & dosificación , Células Cultivadas , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Antagonistas de Aminoácidos Excitadores/administración & dosificación , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Células HEK293 , Humanos , Masculino , Nocicepción/fisiología , Ratas , Ratas Wistar , Transducción de Señal/fisiología
3.
J Venom Anim Toxins Incl Trop Dis ; 26: e20190070, 2020 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-32362927

RESUMEN

BACKGROUND: Intrathecal injection of voltage-sensitive calcium channel blocker peptide toxins exerts analgesic effect in several animal models of pain. Upon intrathecal administration, recombinant Phα1ß exerts the same analgesic effects as the those of the native toxin. However, from a clinical perspective, the intrathecal administration limits the use of anesthetic drugs in patients. Therefore, this study aimed to investigate the possible antinociceptive effect of intravenous recombinant Phα1ß in rat models of neuropathic pain, as well as its side effects on motor, cardiac (heart rate and blood pressure), and biochemical parameters. METHODS: Male Wistar rats and male Balb-C mice were used in this study. Giotto Biotech® synthesized the recombinant version of Phα1ß using Escherichia coli expression. In rats, neuropathic pain was induced by chronic constriction of the sciatic nerve and paclitaxel-induced acute and chronic pain. Mechanical sensitivity was evaluated using von Frey filaments. A radiotelemeter transmitter (TA11PA-C10; Data Sciences, St. Paul, MN, USA) was placed on the left carotid of mice for investigation of cardiovascular side effects. Locomotor activity data were evaluated using the open-field paradigm, and serum CKMB, TGO, TGP, LDH, lactate, creatinine, and urea levels were examined. RESULTS: Intravenous administration of recombinant Phα1ß toxin induced analgesia for up to 4 h, with ED50 of 0.02 (0.01-0.03) mg/kg, and reached the maximal effect (Emax = 100% antinociception) at a dose of 0.2 mg/kg. No significant changes were observed in any of the evaluated motor, cardiac or biochemical parameters. CONCLUSION: Our data suggest that intravenous administration of recombinant Phα1ß may be feasible for drug-induced analgesia, without causing any severe side effects.

4.
Neuropharmacology ; 162: 107826, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31647972

RESUMEN

Capsaicin, an agonist of TRPV1, evokes intracellular [Ca2+] transients and glutamate release from perfused trigeminal ganglion. The spider toxin PnTx3-5, native or recombinant is more potent than the selective TRPV1 blocker SB-366791 with IC50 of 47 ±â€¯0.18 nM, 45 ±â€¯1.18 nM and 390 ±â€¯5.1 nM in the same experimental conditions. PnTx3-5 is thus more potent than the selective TRPV1 blocker SB-366791. PnTx3-5 (40 nM) and SB-366791 (3 µM) also inhibited the capsaicin-induced increase in intracellular Ca2+ in HEK293 cells transfected with TRPV1 by 75 ±â€¯16% and 84 ±â€¯3.2%, respectively. In HEK293 cells transfected with TRPA1, cinnamaldehyde (30 µM) generated an increase in intracellular Ca2+ that was blocked by the TRPA1 antagonist HC-030031 (10 µM, 89% inhibition), but not by PnTx3-5 (40 nM), indicating selectivity of the toxin for TRPV1. In whole-cell patch-clamp experiments on HEK293 cells transfected with TRPV1, capsaicin (10 µM) generated inward currents that were blocked by SB-366791 and by both native and recombinant PnTx3-5 by 47 ±â€¯1.4%; 54 ±â€¯7.8% and 56 ±â€¯9.0%, respectively. Intradermal injection of capsaicin into the rat left vibrissa induced nociceptive behavior that was blocked by pre-injection with either SB-366791 (3 nmol/site i.d., 83.3 ±â€¯7.2% inhibition) or PnTx3-5 (100 fmol/site, 89 ±â€¯8.4% inhibition). We conclude that both native and recombinant PnTx3-5 are potent TRPV1 receptor antagonists with antinociceptive action on pain behavior evoked by capsaicin.


Asunto(s)
Señalización del Calcio/efectos de los fármacos , Capsaicina/farmacología , Dolor Facial/metabolismo , Neuropéptidos/farmacología , Nocicepción/efectos de los fármacos , Fármacos del Sistema Sensorial/farmacología , Canales Catiónicos TRPV/antagonistas & inhibidores , Ganglio del Trigémino/efectos de los fármacos , Acroleína/análogos & derivados , Acroleína/farmacología , Anilidas/farmacología , Animales , Calcio/metabolismo , Cinamatos/farmacología , Modelos Animales de Enfermedad , Ácido Glutámico/efectos de los fármacos , Ácido Glutámico/metabolismo , Células HEK293 , Humanos , Concentración 50 Inhibidora , Masculino , Técnicas de Placa-Clamp , Ratas , Canal Catiónico TRPA1/efectos de los fármacos , Canal Catiónico TRPA1/genética , Canales Catiónicos TRPV/genética , Transfección , Ganglio del Trigémino/metabolismo
5.
Artículo en Inglés | LILACS-Express | LILACS, VETINDEX | ID: biblio-1484780

RESUMEN

Abstract Background: Phoneutria nigriventer venom contains Ph1. This toxin and its recombinant form have a remarkable analgesic potential that is associated with blockage of voltage-gated calcium channels and TRPA1 receptors. Although morphine is a mainstay drug to treat moderate and severe pain related to cancer, it has serious and dose-limiting side effects. Combining recombinant Ph1 and morphine to treat pain is an interesting approach that has been gaining attention. Therefore, a quantitative and reliable method to establish the strength of the antinociceptive interaction between these two substances is necessary. The present study was designed to investigate the nature of the functional antinociceptive (analgesic) interaction between Ph1 recombinant toxin and morphine in a model of cancer pain. Methods: Melanoma was produced by intraplantar inoculation of B16-F10 cells into the right paw of C57BL/6J mice. Von Frey filaments measured the paw-withdrawal threshold after intrathecal administration of morphine, recombinant Ph1, and their combination. Thermal hyperalgesia was assessed using Hargreaves apparatus. The degree of interaction was evaluated using isobolographic analysis. Spontaneous and forced motor performance was assessed with the open-field and rotarod tests, respectively. Results: Co-administration of recombinant Ph1 and morphine synergistically reverses the melanoma-induced mechanical hyperalgesia. The potency of the mixture, measured as the effective dose to reach 50% of maximum possible effect (MPE) in ameliorating mechanical hyperalgesia, was about twice fold higher than expected if the interaction between morphine and recombinant Ph1 was merely additive. Treatment with the combination at doses necessary to reach 50% of MPE caused no spontaneous nor forced motor alterations. Conclusion: The combinatorial use of recombinant Ph1 and morphine allows significant and effective dose reduction of both agents, which has translational potential for opioid-sparing approaches in pain management related to cancer.

6.
J. venom. anim. toxins incl. trop. dis ; 26: e20190070, 2020. tab, graf
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1101267

RESUMEN

Intrathecal injection of voltage-sensitive calcium channel blocker peptide toxins exerts analgesic effect in several animal models of pain. Upon intrathecal administration, recombinant Phα1ß exerts the same analgesic effects as the those of the native toxin. However, from a clinical perspective, the intrathecal administration limits the use of anesthetic drugs in patients. Therefore, this study aimed to investigate the possible antinociceptive effect of intravenous recombinant Phα1ß in rat models of neuropathic pain, as well as its side effects on motor, cardiac (heart rate and blood pressure), and biochemical parameters. Methods: Male Wistar rats and male Balb-C mice were used in this study. Giotto Biotech® synthesized the recombinant version of Phα1ß using Escherichia coli expression. In rats, neuropathic pain was induced by chronic constriction of the sciatic nerve and paclitaxel-induced acute and chronic pain. Mechanical sensitivity was evaluated using von Frey filaments. A radiotelemeter transmitter (TA11PA-C10; Data Sciences, St. Paul, MN, USA) was placed on the left carotid of mice for investigation of cardiovascular side effects. Locomotor activity data were evaluated using the open-field paradigm, and serum CKMB, TGO, TGP, LDH, lactate, creatinine, and urea levels were examined. Results: Intravenous administration of recombinant Phα1ß toxin induced analgesia for up to 4 h, with ED50 of 0.02 (0.01-0.03) mg/kg, and reached the maximal effect (Emax = 100% antinociception) at a dose of 0.2 mg/kg. No significant changes were observed in any of the evaluated motor, cardiac or biochemical parameters. Conclusion: Our data suggest that intravenous administration of recombinant Phα1ß may be feasible for drug-induced analgesia, without causing any severe side effects.(AU)


Asunto(s)
Animales , Ratones , Ratas , Péptidos , Inyecciones Espinales , Proteínas Recombinantes , Analgesia , Fenómenos Bioquímicos , Preparaciones Farmacéuticas
7.
J. venom. anim. toxins incl. trop. dis ; 26: e20190070, 2020. tab, graf
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1484764

RESUMEN

Background: Intrathecal injection of voltage-sensitive calcium channel blocker peptide toxins exerts analgesic effect in several animal models of pain. Upon intrathecal administration, recombinant Phα1β exerts the same analgesic effects as the those of the native toxin. However, from a clinical perspective, the intrathecal administration limits the use of anesthetic drugs in patients. Therefore, this study aimed to investigate the possible antinociceptive effect of intravenous recombinant Phα1β in rat models of neuropathic pain, as well as its side effects on motor, cardiac (heart rate and blood pressure), and biochemical parameters. Methods: Male Wistar rats and male Balb-C mice were used in this study. Giotto Biotech® synthesized the recombinant version of Phα1β using Escherichia coli expression. In rats, neuropathic pain was induced by chronic constriction of the sciatic nerve and paclitaxel-induced acute and chronic pain. Mechanical sensitivity was evaluated using von Frey filaments. A radiotelemeter transmitter (TA11PA-C10; Data Sciences, St. Paul, MN, USA) was placed on the left carotid of mice for investigation of cardiovascular side effects. Locomotor activity data were evaluated using the open-field paradigm, and serum CKMB, TGO, TGP, LDH, lactate, creatinine, and urea levels were examined. Results: Intravenous administration of recombinant Phα1β toxin induced analgesia for up to 4 h, with ED50 of 0.02 (0.01-0.03) mg/kg, and reached the maximal effect (Emax = 100% antinociception) at a dose of 0.2 mg/kg. No significant changes were observed in any of the evaluated motor, cardiac or biochemical parameters. Conclusion: Our data suggest that intravenous administration of recombinant Phα1β may be feasible for drug-induced analgesia, without causing any severe side effects.


Asunto(s)
Masculino , Animales , Ratas , Analgésicos , Neuropatía Ciática/terapia , Paclitaxel , Toxinas Biológicas/administración & dosificación , Toxinas Biológicas/efectos adversos , Venenos de Araña/química , Administración Intravenosa , Ratones Endogámicos BALB C , Ratas Wistar
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda