RESUMEN
Background: Chagas disease, caused by the protozoan Trypanosoma cruzi, is endemic in Latin America and affects 10 million people worldwide. Approximately 12000 deaths attributable to Chagas disease occur annually due to chronic Chagas disease cardiomyopathy (CCC), an inflammatory cardiomyopathy presenting with heart failure and arrythmia; 30% of infected subjects develop CCC years after infection. Genetic mechanisms play a role in differential progression to CCC, but little is known about the role of epigenetic modifications in pathological gene expression patterns in CCC patients' myocardium. DNA methylation is the most common modification in the mammalian genome. Methods: We investigated the impact of genome-wide cardiac DNA methylation on global gene expression in myocardial samples from end-stage CCC patients, compared to control samples from organ donors. Results: In total, 4720 genes were differentially methylated between CCC patients and controls, of which 399 were also differentially expressed. Several of them were related to heart function or to the immune response and had methylation sites in their promoter region. Reporter gene and in silico transcription factor binding analyses indicated promoter methylation modified expression of key genes. Among those, we found potassium channel genes KCNA4 and KCNIP4, involved in electrical conduction and arrythmia, SMOC2, involved in matrix remodeling, as well as enkephalin and RUNX3, potentially involved in the increased T-helper 1 cytokine-mediated inflammatory damage in heart. Conclusions: Results support that DNA methylation plays a role in the regulation of expression of pathogenically relevant genes in CCC myocardium, and identify novel potential disease pathways and therapeutic targets in CCC.
Asunto(s)
Cardiomiopatía Chagásica/genética , Enfermedad de Chagas/genética , Metilación de ADN/genética , Adolescente , Adulto , Anciano , Cardiomiopatía Chagásica/parasitología , Enfermedad de Chagas/parasitología , Enfermedad Crónica , Dermatoglifia del ADN/métodos , Femenino , Expresión Génica/genética , Corazón/parasitología , Humanos , Inflamación/genética , Inflamación/parasitología , Masculino , Persona de Mediana Edad , Miocardio/metabolismo , Canales de Potasio/genética , Regiones Promotoras Genéticas/genética , Trypanosoma cruzi/patogenicidad , Adulto JovenRESUMEN
Long noncoding RNAs (lncRNAs) modulate gene expression at the epigenetic, transcriptional, and posttranscriptional levels. Dysregulation of the lncRNA known as myocardial infarction-associated transcript (MIAT) has been associated with myocardial infarction. Chagas disease causes a severe inflammatory dilated chronic cardiomyopathy (CCC). We investigated the role of MIAT in CCC. A whole-transcriptome analysis of heart biopsy specimens and formalin-fixed, paraffin-embedded samples revealed that MIAT was overexpressed in patients with CCC, compared with subjects with noninflammatory dilated cardiomyopathy and controls. These results were confirmed in a mouse model. Results suggest that MIAT is a specific biomarker of CCC.
Asunto(s)
Enfermedad de Chagas/complicaciones , Enfermedad de Chagas/genética , Perfilación de la Expresión Génica , Infarto del Miocardio/etiología , Infarto del Miocardio/genética , ARN Largo no Codificante , Animales , Enfermedad de Chagas/fisiopatología , Femenino , Humanos , Masculino , Ratones , Factores de TranscripciónRESUMEN
BACKGROUND: Chronic Chagas disease cardiomyopathy (CCC), a late consequence of Trypanosoma cruzi infection, is an inflammatory cardiomyopathy with prognosis worse than those of noninflammatory etiology (NIC). Although the T cell-rich myocarditis is known to play a pathogenetic role, the relative contribution of each of the functional T cell subsets has never been thoroughly investigated. We therefore assessed gene expression of cytokines and transcription factors involved in differentiation and effector function of each functional T cell subset (TH1/TH2/TH17/Treg) in CCC, NIC, and heart donor myocardial samples. METHODS AND RESULTS: Quantitative PCR showed markedly upregulated expression of IFN-γ and transcription factor T-bet, and minor increases of GATA-3; FoxP3 and CTLA-4; IL-17 and IL-18 in CCC as compared with NIC samples. Conversely, cytokines expressed by TH2 cells (IL-4, IL-5, and IL-13) or associated with Treg (TGF-ß and IL-10) were not upregulated in CCC myocardium. Expression of TH1-related genes such as T-bet, IFN-γ, and IL-18 correlated with ventricular dilation, FoxP3, and CTLA-4. CONCLUSIONS: Results are consistent with a strong local TH1-mediated response in most samples, possibly associated with pathological myocardial remodeling, and a proportionally smaller FoxP3(+)CTLA4(+) Treg cell population, which is unable to completely curb IFN-γ production in CCC myocardium, therefore fueling inflammation.
Asunto(s)
Cardiomiopatía Chagásica/inmunología , Cardiomiopatía Chagásica/metabolismo , Miocardio/metabolismo , Adulto , Femenino , Factores de Transcripción Forkhead/metabolismo , Factor de Transcripción GATA3/metabolismo , Humanos , Masculino , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Proteínas de Dominio T Box/metabolismo , Células TH1/metabolismoRESUMEN
Chronic Chagas disease (CCC) is an inflammatory dilated cardiomyopathy with a worse prognosis compared to other cardiomyopathies. We show the expression and activity of Matrix Metalloproteinases (MMP) and of their inhibitors TIMP (tissue inhibitor of metalloproteinases) in myocardial samples of end stage CCC, idiopathic dilated cardiomyopathy (DCM) patients, and from organ donors. Our results showed significantly increased mRNA expression of several MMPs, several TIMPs and EMMPRIN in CCC and DCM samples. MMP-2 and TIMP-2 protein levels were significantly elevated in both sample groups, while MMP-9 protein level was exclusively increased in CCC. MMPs 2 and 9 activities were also exclusively increased in CCC. Results suggest that the balance between proteins that inhibit the MMP-2 and 9 is shifted toward their activation. Inflammation-induced increases in MMP-2 and 9 activity and expression associated with imbalanced TIMP regulation could be related to a more extensive heart remodeling and poorer prognosis in CCC patients.
Asunto(s)
Cardiomiopatía Dilatada , Cardiomiopatía Chagásica , Cardiomiopatía Dilatada/metabolismo , Humanos , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , MiocardioRESUMEN
Chagas disease, caused by the protozoan Trypanosoma cruzi, is an endemic parasitic disease of Latin America, affecting 7 million people. Although most patients are asymptomatic, 30% develop complications, including the often-fatal Chronic Chagasic Cardiomyopathy (CCC). Although previous studies have demonstrated some genetic deregulations associated with CCCs, the causes of their deregulations remain poorly described. Based on bulk RNA-seq and whole genome DNA methylation data, we investigated the genetic and epigenetic deregulations present in the moderate and severe stages of CCC. Analysis of heart tissue gene expression profile allowed us to identify 1407 differentially expressed transcripts (DEGs) specific from CCC patients. A tissue DNA methylation analysis done on the same tissue has permitted the identification of 92 regulatory Differentially Methylated Regions (DMR) localized in the promoter of DEGs. An in-depth study of the transcription factors binding sites (TFBS) in the DMRs corroborated the importance of TFBS's DNA methylation for gene expression in CCC myocardium. TBX21, RUNX3 and EBF1 are the transcription factors whose binding motif appears to be affected by DNA methylation in the largest number of genes. By combining both transcriptomic and methylomic analysis on heart tissue, and methylomic analysis on blood, 4 biological processes affected by severe CCC have been identified, including immune response, ion transport, cardiac muscle processes and nervous system. An additional study on blood methylation of moderate CCC samples put forward the importance of ion transport and nervous system in the development of the disease.
Asunto(s)
Cardiomiopatía Chagásica , Enfermedad de Chagas , Trypanosoma cruzi , Enfermedad de Chagas/genética , Epigénesis Genética , Humanos , Factores de Transcripción/genéticaRESUMEN
Chagas disease cardiomyopathy (CCC) is an inflammatory dilated cardiomyopathy occurring in 30% of the 6 million infected with the protozoan Trypanosoma cruzi in Latin America. Survival is significantly lower in CCC than ischemic (IC) and idiopathic dilated cardiomyopathy (DCM). Previous studies disclosed a selective decrease in mitochondrial ATP synthase alpha expression and creatine kinase activity in CCC myocardium as compared to IDC and IC, as well as decreased in vivo myocardial ATP production. Aiming to identify additional constraints in energy metabolism specific to CCC, we performed a proteomic study in myocardial tissue samples from CCC, IC and DCM obtained at transplantation, in comparison with control myocardial tissue samples from organ donors. Left ventricle free wall myocardial samples were subject to two-dimensional electrophoresis with fluorescent labeling (2D-DIGE) and protein identification by mass spectrometry. We found altered expression of proteins related to mitochondrial energy metabolism, cardiac remodeling, and oxidative stress in the 3 patient groups. Pathways analysis of proteins differentially expressed in CCC disclosed mitochondrial dysfunction, fatty acid metabolism and transmembrane potential of mitochondria. CCC patients' myocardium displayed reduced expression of 22 mitochondrial proteins belonging to energy metabolism pathways, as compared to 17 in DCM and 3 in IC. Significantly, 6 beta-oxidation enzymes were reduced in CCC, while only 2 of them were down-regulated in DCM and 1 in IC. We also observed that the cytokine IFN-gamma, previously described with increased levels in CCC, reduces mitochondrial membrane potential in cardiomyocytes. Results suggest a major reduction of mitochondrial energy metabolism and mitochondrial dysfunction in CCC myocardium which may be in part linked to IFN-gamma. This may partially explain the worse prognosis of CCC as compared to DCM or IC.
Asunto(s)
Cardiomiopatía Chagásica/metabolismo , Cardiomiopatía Chagásica/fisiopatología , Corazón/fisiopatología , Mitocondrias/metabolismo , Miocardio/metabolismo , Adolescente , Adulto , Metabolismo Energético/fisiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mitocondrias/patología , Miocardio/patología , Adulto JovenRESUMEN
Infection by the protozoan Trypanosoma cruzi causes Chagas disease cardiomyopathy (CCC) and can lead to arrhythmia, heart failure and death. Chagas disease affects 8 million people worldwide, and chronic production of the cytokines IFN-γ and TNF-α by T cells together with mitochondrial dysfunction are important players for the poor prognosis of the disease. Mitochondria occupy 40% of the cardiomyocytes volume and produce 95% of cellular ATP that sustain the life-long cycles of heart contraction. As IFN-γ and TNF-α have been described to affect mitochondrial function, we hypothesized that IFN-γ and TNF-α are involved in the myocardial mitochondrial dysfunction observed in CCC patients. In this study, we quantified markers of mitochondrial dysfunction and nitro-oxidative stress in CCC heart tissue and in IFN-γ/TNF-α-stimulated AC-16 human cardiomyocytes. We found that CCC myocardium displayed increased levels of nitro-oxidative stress and reduced mitochondrial DNA as compared with myocardial tissue from patients with dilated cardiomyopathy (DCM). IFN-γ/TNF-α treatment of AC-16 cardiomyocytes induced increased nitro-oxidative stress and decreased the mitochondrial membrane potential (ΔΨm). We found that the STAT1/NF-κB/NOS2 axis is involved in the IFN-γ/TNF-α-induced decrease of ΔΨm in AC-16 cardiomyocytes. Furthermore, treatment with mitochondria-sparing agonists of AMPK, NRF2 and SIRT1 rescues ΔΨm in IFN-γ/TNF-α-stimulated cells. Proteomic and gene expression analyses revealed that IFN-γ/TNF-α-treated cells corroborate mitochondrial dysfunction, transmembrane potential of mitochondria, altered fatty acid metabolism and cardiac necrosis/cell death. Functional assays conducted on Seahorse respirometer showed that cytokine-stimulated cells display decreased glycolytic and mitochondrial ATP production, dependency of fatty acid oxidation as well as increased proton leak and non-mitochondrial oxygen consumption. Together, our results suggest that IFN-γ and TNF-α cause direct damage to cardiomyocytes' mitochondria by promoting oxidative and nitrosative stress and impairing energy production pathways. We hypothesize that treatment with agonists of AMPK, NRF2 and SIRT1 might be an approach to ameliorate the progression of Chagas disease cardiomyopathy.
Asunto(s)
Cardiomiopatía Chagásica/metabolismo , Interferón gamma/metabolismo , Mitocondrias/metabolismo , Miocitos Cardíacos/metabolismo , Estrés Oxidativo/fisiología , Factor de Necrosis Tumoral alfa/metabolismo , Adolescente , Adulto , Anciano , Cardiomiopatía Chagásica/patología , Cardiomiopatía Chagásica/fisiopatología , Niño , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mitocondrias/patología , Miocitos Cardíacos/patología , Adulto JovenRESUMEN
Chronic Chagas disease cardiomyopathy (CCC), an especially aggressive inflammatory dilated cardiomyopathy caused by lifelong infection with the protozoan Trypanosoma cruzi, is a major cause of cardiomyopathy in Latin America. Although chronic myocarditis may play a major pathogenetic role, little is known about the molecular mechanisms responsible for its severity. The aim of this study is to study the genes and microRNAs expression in tissues and their connections in regards to the pathobiological processes. To do so, we integrated for the first time global microRNA and mRNA expression profiling from myocardial tissue of CCC patients employing pathways and network analyses. We observed an enrichment in biological processes and pathways associated with the immune response and metabolism. IFNγ, TNF and NFkB were the top upstream regulators. The intersections between differentially expressed microRNAs and differentially expressed target mRNAs showed an enrichment in biological processes such as Inflammation, inflammation, Th1/IFN-γ-inducible genes, fibrosis, hypertrophy, and mitochondrial/oxidative stress/antioxidant response. MicroRNAs also played a role in the regulation of gene expression involved in the key cardiomyopathy-related processes fibrosis, hypertrophy, myocarditis and arrhythmia. Significantly, a discrete number of differentially expressed microRNAs targeted a high number of differentially expressed mRNAs (>20) in multiple processes. Our results suggest that miRNAs orchestrate expression of multiple genes in the major pathophysiological processes in CCC heart tissue. This may have a bearing on pathogenesis, biomarkers and therapy.
Asunto(s)
Cardiomiopatía Chagásica/metabolismo , Cardiomiopatía Chagásica/patología , Regulación de la Expresión Génica/fisiología , MicroARNs/metabolismo , Enfermedad Crónica , Genoma Humano , Humanos , MicroARNs/genética , Análisis de Componente PrincipalRESUMEN
Cardiomyopathies are major causes of heart failure. Chagas disease (CD) is caused by the parasite Trypanosoma cruzi, and it is endemic in Central and South America. Thirty percent of cases evolve into chronic chagas cardiomyopathy (CCC), which has worse prognosis as compared with other cardiomyopathies. In vivo bioenergetic analysis and ex vivo proteomic analysis of myocardial tissues highlighted worse mitochondrial dysfunction in CCC, and previous studies identified nuclear-encoded mitochondrial gene variants segregating with CCC. Here, we assessed the role of the mitochondrial genome through mtDNA copy number variations and mtDNA haplotyping and sequencing from heart or blood tissues of severe, moderate CCC and asymptomatic/indeterminate Chagas disease as well as healthy controls as an attempt to help decipher mitochondrial-intrinsic genetic involvement in Chagas disease development. We have found that the mtDNA copy number was significantly lower in CCC than in heart tissue from healthy individuals, while blood mtDNA content was similar among asymptomatic Chagas disease, moderate, and severe CCC patients. An MtDNA haplogrouping study has indicated that African haplogroups were over represented in the Chagas subject groups in comparison with healthy Brazilian individuals. The European lineage is associated with protection against cardiomyopathy and the macro haplogroup H is associated with increased risk towards CCC. Using mitochondria DNA sequencing, 84 mtDNA-encoded protein sequence pathogenic variants were associated with CCC. Among them, two variants were associated to left ventricular non-compaction and two to hypertrophic cardiomyopathy. The finding that mitochondrial protein-coding SNPs and mitochondrial haplogroups associate with risk of evolving to CCC is consistent with a key role of mitochondrial DNA in the development of chronic chagas disease cardiomyopathy.
RESUMEN
Abstract: Chagas disease, caused by the protozoan Trypanosoma cruzi, is an endemic parasitic disease of Latin America, affecting 7 million people. Although most patients are asymptomatic, 30% develop complications, including the often-fatal Chronic Chagasic Cardiomyopathy (CCC). Although previous studies have demonstrated some genetic deregulations associated with CCCs, the causes of their deregulations remain poorly described. Based on bulk RNA-seq and whole genome DNA methylation data, we investigated the genetic and epigenetic deregulations present in the moderate and severe stages of CCC. Analysis of heart tissue gene expression profile allowed us to identify 1407 differentially expressed transcripts (DEGs) specific from CCC patients. A tissue DNA methylation analysis done on the same tissue has permitted the identification of 92 regulatory Differentially Methylated Regions (DMR) localized in the promoter of DEGs. An in-depth study of the transcription factors binding sites (TFBS) in the DMRs corroborated the importance of TFBS's DNA methylation for gene expression in CCC myocardium. TBX21, RUNX3 and EBF1 are the transcription factors whose binding motif appears to be affected by DNA methylation in the largest number of genes. By combining both transcriptomic and methylomic analysis on heart tissue, and methylomic analysis on blood, 4 biological processes affected by severe CCC have been identified, including immune response, ion transport, cardiac muscle processes and nervous system. An additional study on blood methylation of moderate CCC samples put forward the importance of ion transport and nervous system in the development of the disease.
Asunto(s)
Humanos , Cardiomiopatía Chagásica , Enfermedad de Chagas/genética , Factores de Transcripción/genética , Trypanosoma cruzi , Epigénesis Genética , MetilaciónRESUMEN
Infection by the protozoan Trypanosoma cruzi causes Chagas disease cardiomyopathy (CCC) and can lead to arrhythmia, heart failure and death. Chagas disease affects 8 million people worldwide, and chronic production of the cytokines IFN-γ and TNF-α by T cells together with mitochondrial dysfunction are important players for the poor prognosis of the disease. Mitochondria occupy 40% of the cardiomyocytes volume and produce 95% of cellular ATP that sustain the life-long cycles of heart contraction. As IFN-γ and TNF-α have been described to affect mitochondrial function, we hypothesized that IFN-γ and TNF-α are involved in the myocardial mitochondrial dysfunction observed in CCC patients. In this study, we quantified markers of mitochondrial dysfunction and nitro-oxidative stress in CCC heart tissue and in IFN-γ/TNF-α-stimulated AC-16 human cardiomyocytes. We found that CCC myocardium displayed increased levels of nitro-oxidative stress and reduced mitochondrial DNA as compared with myocardial tissue from patients with dilated cardiomyopathy (DCM). IFN-γ/TNF-α treatment of AC-16 cardiomyocytes induced increased nitro-oxidative stress and decreased the mitochondrial membrane potential (ΔΨm). We found that the STAT1/NF-κB/NOS2 axis is involved in the IFN-γ/TNF-α-induced decrease of ΔΨm in AC-16 cardiomyocytes. Furthermore, treatment with mitochondria-sparing agonists of AMPK, NRF2 and SIRT1 rescues ΔΨm in IFN-γ/TNF-α-stimulated cells. Proteomic and gene expression analyses revealed that IFN-γ/TNF-α-treated cells corroborate mitochondrial dysfunction, transmembrane potential of mitochondria, altered fatty acid metabolism and cardiac necrosis/cell death. Functional assays conducted on Seahorse respirometer showed that cytokine-stimulated cells display decreased glycolytic and mitochondrial ATP production, dependency of fatty acid oxidation as well as increased proton leak and non-mitochondrial oxygen consumption. Together, our results suggest that IFN-γ and TNF-α cause direct damage to cardiomyocytes’ mitochondria by promoting oxidative and nitrosative stress and impairing energy production pathways. We hypothesize that treatment with agonists of AMPK, NRF2 and SIRT1 might be an approach to ameliorate the progression of Chagas disease cardiomyopathy.
RESUMEN
BACKGROUND/METHODS: Chagas disease is caused by an intracellular parasite, Trypanosoma cruzi, and it is a leading cause of heart failure in Latin America. The main clinical consequence of the infection is the development of a Chronic Chagas disease Cardiomyopathy (CCC), which is characterized by myocarditis, hypertrophy and fibrosis and affects about 30% of infected patients. CCC has a worse prognosis than other cardiomyopathies, like idiopathic dilated cardiomyopathy (DCM). It is well established that myocardial gene expression patterns are altered in CCC, but the molecular mechanisms underlying these differences are not clear. MicroRNAs are recently discovered regulators of gene expression, and are recognized as important factors in heart development and cardiovascular disorders (CD). We analyzed the expression of nine different miRNAs in myocardial tissue samples of CCC patients in comparison to DCM patients and samples from heart transplant donors. Using the results of a cDNA microarray database on CCC and DCM myocardium, signaling networks were built and nodal molecules were identified. RESULTS: We observed that five miRNAs were significantly altered in CCC and three in DCM; importantly, three miRNAs were significantly reduced in CCC as compared to DCM. We observed that multiple gene targets of the differentially expressed miRNAs showed a concordant inverse expression in CCC. Significantly, most gene targets and involved networks belong to crucial disease-related signaling pathways. CONCLUSION: These results suggest that miRNAs may play a major role in the regulation of gene expression in CCC pathogenesis, with potential implication as diagnostic and prognostic tools.
Asunto(s)
Cardiomiopatía Chagásica/metabolismo , MicroARNs/biosíntesis , Adolescente , Adulto , Biomarcadores/metabolismo , Cardiomiopatía Chagásica/diagnóstico , Cardiomiopatía Chagásica/genética , Enfermedad Crónica , Femenino , Redes Reguladoras de Genes/fisiología , Humanos , Masculino , MicroARNs/genética , Persona de Mediana Edad , Miocardio/metabolismo , Miocardio/patología , Adulto JovenRESUMEN
BACKGROUND: Discrepancies between pre and post-mortem diagnoses are reported in the literature, ranging from 4.1 to 49.8 % in cases referred for necropsy, with important impact on patient treatment. OBJECTIVE: To analyze patients who died after cardiac transplantation and to compare the pre- and post-mortem diagnoses. METHODS: Perform a review of medical records and analyze clinical data, comorbidities, immunosuppression regimen, laboratory tests, clinical cause of death and cause of death at the necropsy. Then, the clinical and necroscopic causes of death of each patient were compared. RESULTS: 48 deaths undergoing necropsy were analyzed during 2000-2010; 29 (60.4 %) had concordant clinical and necroscopic diagnoses, 16 (33.3%) had discordant diagnoses and three (6.3%) had unclear diagnoses. Among the discordant ones, 15 (31.3%) had possible impact on survival and one (2.1%) had no impact on survival. The main clinical misdiagnosis was infection, with five cases (26.7 % of discordant), followed by hyperacute rejection, with four cases (20 % of the discordant ones), and pulmonary thromboembolism, with three cases (13.3% of discordant ones). CONCLUSION: Discrepancies between clinical diagnosis and necroscopic findings are commonly found in cardiac transplantation. New strategies to improve clinical diagnosis should be made, considering the results of the necropsy, to improve the treatment of heart failure by heart transplantation.
Asunto(s)
Autopsia , Causas de Muerte , Trasplante de Corazón/mortalidad , Adulto , Errores Diagnósticos/estadística & datos numéricos , Femenino , Humanos , Masculino , Registros Médicos/estadística & datos numéricos , Persona de Mediana Edad , Estudios Retrospectivos , Sobrevida , Factores de TiempoRESUMEN
AIMS: Chagas disease, caused by the protozoan Trypanosoma cruzi is endemic in Latin America, and may lead to a life-threatening inflammatory dilated, chronic Chagas cardiomyopathy (CCC). One third of T. cruzi-infected individuals progress to CCC while the others remain asymptomatic (ASY). A possible genetic component to disease progression was suggested by familial aggregation of cases and the association of markers of innate and adaptive immunity genes with CCC development. Since mutations in multiple sarcomeric genes, including alpha-cardiac actin (ACTC1) have been involved in hereditary dilated cardiomyopathy, we investigated the involvement of the ACTC1 gene in CCC pathogenesis. METHODS AND RESULTS: We conducted a proteomic and genetic study on a Brazilian study population. The genetic study was done on a main cohort including 118 seropositive asymptomatic subjects and 315 cases and the replication was done on 36 asymptomatic and 102 CCC cases. ACTC1 protein and mRNA levels were lower in myocardial tissue from patients with end-stage CCC than those found in hearts from organ donors. Genotyping a case-control cohort of CCC and ASY subjects for all informative single nucleotide polymorphism (SNP) in the ACTC1 gene identified rs640249 SNP, located at the 5' region, as associated to CCC. Associations are borderline after correction for multiple testing. Correlation and haplotype analysis led to the identification of a susceptibility haplotype. Functional assays have shown that the rs640249A/C polymorphism affects the binding of transcriptional factors in the promoter regions of the ACTC1 gene. Confirmation of the detected association on a larger independent replication cohort will be useful. CONCLUSIONS: Genetic variations at the ACTC1 gene may contribute to progression to chronic Chagas Cardiomyopathy among T. cruzi-infected patients, possibly by modulating transcription factor binding to ACTC1 promoter regions.
Asunto(s)
Actinas/genética , Cardiomiopatía Chagásica/genética , Predisposición Genética a la Enfermedad/genética , Polimorfismo de Nucleótido Simple , Actinas/metabolismo , Femenino , Regulación de la Expresión Génica , Humanos , Masculino , Miocardio/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismoRESUMEN
BACKGROUND: Chronic Chagas cardiomyopathy (CCC), a life-threatening inflammatory dilated cardiomyopathy, affects 30% of the approximately 8 million patients infected by Trypanosoma cruzi. Even though the Th1 T cell-rich myocarditis plays a pivotal role in CCC pathogenesis, little is known about the factors controlling inflammatory cell migration to CCC myocardium. METHODS AND RESULTS: Using confocal immunofluorescence and quantitative PCR, we studied cell surface staining and gene expression of the CXCR3, CCR4, CCR5, CCR7, CCR8 receptors and their chemokine ligands in myocardial samples from end-stage CCC patients. CCR5+, CXCR3+, CCR4+, CCL5+ and CXCL9+ mononuclear cells were observed in CCC myocardium. mRNA expression of the chemokines CCL5, CXCL9, CXCL10, CCL17, CCL19 and their receptors was upregulated in CCC myocardium. CXCL9 mRNA expression directly correlated with the intensity of myocarditis, as well as with mRNA expression of CXCR3, CCR4, CCR5, CCR7, CCR8 and their ligands. We also analyzed single-nucleotide polymorphisms for genes encoding the most highly expressed chemokines and receptors in a cohort of Chagas disease patients. CCC patients with ventricular dysfunction displayed reduced genotypic frequencies of CXCL9 rs10336 CC, CXCL10 rs3921 GG, and increased CCR5 rs1799988CC as compared to those without dysfunction. Significantly, myocardial samples from CCC patients carrying the CXCL9/CXCL10 genotypes associated to a lower risk displayed a 2-6 fold reduction in mRNA expression of CXCL9, CXCL10, and other chemokines and receptors, along with reduced intensity of myocarditis, as compared to those with other CXCL9/CXCL10 genotypes. CONCLUSIONS: Results may indicate that genotypes associated to reduced risk in closely linked CXCL9 and CXCL10 genes may modulate local expression of the chemokines themselves, and simultaneously affect myocardial expression of other key chemokines as well as intensity of myocarditis. Taken together our results may suggest that CXCL9 and CXCL10 are master regulators of myocardial inflammatory cell migration, perhaps affecting clinical progression to the life-threatening form of CCC.
Asunto(s)
Cardiomiopatía Chagásica/genética , Cardiomiopatía Chagásica/patología , Quimiocina CXCL10/biosíntesis , Quimiocina CXCL9/biosíntesis , Polimorfismo Genético , Trypanosoma cruzi/patogenicidad , Adolescente , Adulto , Quimiocina CXCL10/genética , Quimiocina CXCL9/genética , Resistencia a la Enfermedad , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Adulto JovenRESUMEN
BACKGROUND: Chronic Chagas disease cardiomyopathy (CCC) is an inflammatory dilated cardiomyopathy with a worse prognosis than other cardiomyopathies. CCC occurs in 30 % of individuals infected with Trypanosoma cruzi, endemic in Latin America. Heart failure is associated with impaired energy metabolism, which may be correlated to contractile dysfunction. We thus analyzed the myocardial gene and protein expression, as well as activity, of key mitochondrial enzymes related to ATP production, in myocardial samples of end-stage CCC, idiopathic dilated (IDC) and ischemic (IC) cardiomyopathies. METHODOLOGY/PRINCIPAL FINDINGS: Myocardium homogenates from CCC (N=5), IC (N=5) and IDC (N=5) patients, as well as from heart donors (N=5) were analyzed for protein and mRNA expression of mitochondrial creatine kinase (CKMit) and muscular creatine kinase (CKM) and ATP synthase subunits aplha and beta by immunoblotting and by real-time RT-PCR. Total myocardial CK activity was also assessed. Protein levels of CKM and CK activity were reduced in all three cardiomyopathy groups. However, total CK activity, as well as ATP synthase alpha chain protein levels, were significantly lower in CCC samples than IC and IDC samples. CCC myocardium displayed selective reduction of protein levels and activity of enzymes crucial for maintaining cytoplasmic ATP levels. CONCLUSIONS/SIGNIFICANCE: The selective impairment of the CK system may be associated to the loss of inotropic reserve observed in CCC. Reduction of ATP synthase alpha levels is consistent with a decrease in myocardial ATP generation through oxidative phosphorylation. Together, these results suggest that the energetic deficit is more intense in the myocardium of CCC patients than in the other tested dilated cardiomyopathies.
Asunto(s)
Complejos de ATP Sintetasa/metabolismo , Cardiomiopatía Chagásica/fisiopatología , Forma Mitocondrial de la Creatina-Quinasa/metabolismo , Miocardio/enzimología , Complejos de ATP Sintetasa/genética , Adolescente , Adulto , Forma Mitocondrial de la Creatina-Quinasa/genética , Perfilación de la Expresión Génica , Humanos , Immunoblotting , Masculino , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Adulto JovenRESUMEN
OBJECTIVES: With the increase in life expectancy occurred in recent decades, it has been noted the concomitant increase in the prevalence of aortic stenosis and degenerative disease of atherosclerotic coronary artery. This study aims to evaluate the influence of atherosclerotic coronary artery disease in patients with critical aortic stenosis undergoing isolated or combined implant valve prosthesis and coronary artery by pass grafting. METHODS: In the period of January 2001 to March 2006, there were analyzed 448 patients undergoing isolated implant aortic valve prosthesis (Group I) and 167 patients undergoing aortic valve prosthesis implant combined with coronary artery bypass grafting (Group II). Pre- and intra-operative variables elected for analysis were: age, gender, body mass index, stroke, diabetes mellitus, chronic obstructive pulmonary disease, rheumatic fever, hypertension, endocarditis, acute myocardial infarction, smoking, Fraction of the left ventricular ejection, critical atherosclerotic coronary artery disease, chronic atrial fibrillation, aortic valve operation prior (conservative), functional class of congestive heart failure, value serum creatinine, total cholesterol, size of the prosthesis used, length and number of distal anastomoses held in myocardial revascularization, duration of cardiopulmonary bypass and aortic clamping time. The statistical study employed invariant and multivariate analysis. RESULTS: Hospital mortality was 14.3% (64 deaths) in Group I, and 14.5% (58 deaths) in patients with atherosclerotic coronary artery disease associated criticism (Group IB) and 12.8% (six deaths) in which had this association (Group IA). Hospital mortality in Group II was 17.6% (29 deaths), and 16.1% (20 deaths) in patients undergoing implantation of prosthetic aortic valve combined to complete myocardial revascularization (Group II) and 20.9% (nine deaths) in the myocardial revascularization with incomplete (Group IIB). CONCLUSIONS: In patients undergoing implant isolated from aortic valve prosthesis, the presence of atherosclerotic coronary artery disease associated critical in at least two arteries, influenced the hospital mortality. In patients undergoing surgical treatment combined the number of coronary arteries with critical atherosclerotic disease and extent of coronary artery bypass grafting (complete or incomplete), did not affect the hospital mortality, but the realization of more than three anastomoses in the distal myocardial revascularization interfered.
Asunto(s)
Estenosis de la Válvula Aórtica/cirugía , Puente de Arteria Coronaria , Enfermedad de la Arteria Coronaria/cirugía , Implantación de Prótesis de Válvulas Cardíacas , Mortalidad Hospitalaria , Complicaciones Posoperatorias/mortalidad , Estenosis de la Válvula Aórtica/mortalidad , Terapia Combinada , Enfermedad de la Arteria Coronaria/mortalidad , Métodos Epidemiológicos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Complicaciones Posoperatorias/etiología , Factores de RiesgoRESUMEN
BACKGROUND: Pulmonary hypertension (PH) is a factor of poor prognosis in the postoperative period of heart transplant (HT) and thus, the study of the degree of reversibility to vasodilators is mandatory during the preoperative assessment. OBJECTIVE: To evaluate the pulmonary and systemic hemodynamic effects of sildenafil as a vasodilator during the PH reversibility test in patients that are candidates to HT. METHODS: Patients awaiting HT were submitted to the measurement of systemic and pulmonary hemodynamic variables before and after the administration of a single sublingual dose of 100 mg of sildenafil during right heart catheterization. RESULTS: Fourteen patients (age: 47+/-12 years, 71.4% men) with advanced heart failure Ejection Fraction (EF) 25 +/- 7%, Functional Class (FC - NYHA) FC III - 6 and FC IV - 8, were evaluated in this study. The acute administration of sildenafil showed to be effective in decreasing the systolic (62.4 +/- 12.1 vs 51.5 +/- 9.6 mmHg, CI=95%, p<0.05) and mean (40.7 +/- 7.3 vs 33.8 +/- 7.6 mmHg, CI=95%, p <0.05) pressures of the pulmonary artery. There was also a significant decrease in the pulmonary (4.2 +/- 3 vs 2.0 +/- 0.9 uWood, CI=95%, p<0.05) and systemic vascular resistance (22.9 +/- 6.8 vs 18.6 +/- 4.1 Wood, CI=95%, p<0.05), associated to an increase in the cardiac output (3.28 +/- 0.79 vs 4.12 +/-1.12 uWood, CI=95%, p<0.05) without, however, significantly interfering in the systemic arterial pressure (87.8 +/- 8.2 vs 83.6 +/- 9.1 mmHg, CI=95%, p=0.3). CONCLUSION: The sublingual administration of sildenafil is an effective and safe alternative as a vasodilator during the PH reversibility test in patients with heart failure and awaiting a HT.