Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
PLoS Biol ; 22(6): e3002693, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38905306

RESUMEN

Candida albicans is a commensal of the human microbiota that can form biofilms on implanted medical devices. These biofilms are tolerant to antifungals and to the host immune system. To identify novel genes modulating C. albicans biofilm formation, we performed a large-scale screen with 2,454 C. albicans doxycycline-dependent overexpression strains and identified 16 genes whose overexpression significantly hampered biofilm formation. Among those, overexpression of the ZCF15 and ZCF26 paralogs that encode transcription factors and have orthologs only in biofilm-forming species of the Candida clade, caused impaired biofilm formation both in vitro and in vivo. Interestingly, overexpression of ZCF15 impeded biofilm formation without any defect in hyphal growth. Transcript profiling, transcription factor binding, and phenotypic microarray analyses conducted upon overexpression of ZCF15 and ZCF26 demonstrated their role in reprogramming cellular metabolism by regulating central metabolism including glyoxylate and tricarboxylic acid cycle genes. Taken together, this study has identified a new set of biofilm regulators, including ZCF15 and ZCF26, that appear to control biofilm development through their specific role in metabolic remodeling.


Asunto(s)
Biopelículas , Candida albicans , Proteínas Fúngicas , Regulación Fúngica de la Expresión Génica , Factores de Transcripción , Biopelículas/crecimiento & desarrollo , Candida albicans/genética , Candida albicans/metabolismo , Candida albicans/fisiología , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Animales , Plancton/metabolismo , Glioxilatos/metabolismo , Perfilación de la Expresión Génica/métodos , Ratones , Ciclo del Ácido Cítrico , Hifa/metabolismo , Hifa/crecimiento & desarrollo , Hifa/genética , Candidiasis/microbiología , Reprogramación Metabólica
2.
J Cell Sci ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39051746

RESUMEN

Candida albicans is the most prevalent fungal pathogen associated with candidemia. Similar to other fungi, the complex life cycle of C. albicans has been challenging to study with high-resolution microscopy due to its small size. We employed ultrastructure expansion microscopy (U-ExM) to directly visualise sub-cellular structures at high resolution in the yeast and during its transition to hyphal growth. NHS-ester pan-labelling in combination with immunofluorescence (IF) via snapshots of various mitotic stages provided a comprehensive map of nucleolar and mitochondrial segregation dynamics and enabled the resolution of inner and outer plaque of spindle pole bodies (SPBs). Analyses of microtubules (MTs) and SPBs suggest that C. albicans displays side-by-side SPB arrangement with a short mitotic spindle and longer astral MTs (aMTs) at the pre-anaphase stage. Modifications to the established U-ExM protocol enabled the expansion of six other human fungal pathogens, revealing that the side-by-side SPB configuration is a plausible conserved feature shared by many fungal species. We highlight the power of U-ExM to investigate sub-cellular organisation at high resolution and low cost in poorly studied and medically relevant microbial pathogens.

3.
Med Mycol ; 62(3)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38414264

RESUMEN

Candida auris poses threats to the global medical community due to its multidrug resistance, ability to cause nosocomial outbreaks and resistance to common sterilization agents. Different variants that emerged at different geographical zones were classified as clades. Clade-typing becomes necessary to track its spread, possible emergence of new clades, and to predict the properties that exhibit a clade bias. We previously reported a colony-Polymerase Chain Reaction-based, clade-identification method employing whole genome alignments and identification of clade-specific sequences of four major geographical clades. Here, we expand the panel by identifying clade 5 which was later isolated in Iran, using specific primers designed through in silico analyses.


Candida auris, a multidrug-resistant fungal pathogen, evolves as distinct geographical clades. We describe the identification of clade 5 specific DNA sequence, which was used to design primers that distinguished clade 5 from other clades, adding to the panel of the clade-identification system.


Asunto(s)
Candida , Candidiasis , Animales , Candida/genética , Candidiasis/epidemiología , Candidiasis/veterinaria , Candida auris , Reacción en Cadena de la Polimerasa/veterinaria , Genoma Fúngico , Antifúngicos/farmacología , Pruebas de Sensibilidad Microbiana/veterinaria
5.
ACS Omega ; 9(5): 5084-5099, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38343938

RESUMEN

The absolute configuration dictates the biological role of chiral molecules in the living world. This is best exemplified by all ribosomally synthesized polypeptides having chiral amino acids only in the l-configuration. However, d-amino acids are also associated with various vital biological processes such as peptidoglycan of the bacterial cell wall, ligands for neurotransmitters, molecules involved in signaling, and precursors of metabolites, to name a few. The occurrence of both l- and d-enantiomers of amino acids in the living systems necessitates the presence of enzymes that exhibit stereoselectivity in recognition of substrates. This mini-review summarizes the overall mechanistic insights into the interconversion of l- and d-amino acids by the amino acid racemases. We discuss the structural, mechanistic, and evolutionary relationship of four crucial enzymes that catalyze the oxidative deamination of l- or d-amino acids and their physiological role in microbes and higher organisms. We highlight the physiological implications of d-amino acid oxidase and d-aspartate oxidase in human health and diseases and their applications as drug targets. Finally, we summarize the potential applications of microbially obtained chiral-selective enzymes as biocatalysts and for various industrial purposes.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda