Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Nat Immunol ; 23(1): 75-85, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34937930

RESUMEN

We report a pleiotropic disease due to loss-of-function mutations in RHBDF2, the gene encoding iRHOM2, in two kindreds with recurrent infections in different organs. One patient had recurrent pneumonia but no colon involvement, another had recurrent infectious hemorrhagic colitis but no lung involvement and the other two experienced recurrent respiratory infections. Loss of iRHOM2, a rhomboid superfamily member that regulates the ADAM17 metalloproteinase, caused defective ADAM17-dependent cleavage and release of cytokines, including tumor-necrosis factor and amphiregulin. To understand the diverse clinical phenotypes, we challenged Rhbdf2-/- mice with Pseudomonas aeruginosa by nasal gavage and observed more severe pneumonia, whereas infection with Citrobacter rodentium caused worse inflammatory colitis than in wild-type mice. The fecal microbiota in the colitis patient had characteristic oral species that can predispose to colitis. Thus, a human immunodeficiency arising from iRHOM2 deficiency causes divergent disease phenotypes that can involve the local microbial environment.


Asunto(s)
Proteína ADAM17/genética , Proteínas Portadoras/genética , Enfermedades de Inmunodeficiencia Primaria/genética , Células A549 , Animales , Niño , Preescolar , Citrobacter rodentium/patogenicidad , Colitis/genética , Citocinas/genética , Infecciones por Enterobacteriaceae/genética , Femenino , Células HEK293 , Humanos , Recién Nacido , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación/genética , Infecciones por Pseudomonas/genética , Pseudomonas aeruginosa/patogenicidad , Transducción de Señal/genética
2.
J Transl Med ; 22(1): 473, 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38764035

RESUMEN

The study of the functional genome in mice and humans has been instrumental for describing the conserved molecular mechanisms regulating human reproductive biology, and for defining the etiologies of monogenic fertility disorders. Infertility is a reproductive disorder that includes various conditions affecting a couple's ability to achieve a healthy pregnancy. Recent advances in next-generation sequencing and CRISPR/Cas-mediated genome editing technologies have facilitated the identification and characterization of genes and mechanisms that, if affected, lead to infertility. We report established genes that regulate conserved functions in fundamental reproductive processes (e.g., sex determination, gametogenesis, and fertilization). We only cover genes the deletion of which yields comparable fertility phenotypes in both rodents and humans. In the case of newly-discovered genes, we report the studies demonstrating shared cellular and fertility phenotypes resulting from loss-of-function mutations in both species. Finally, we introduce new model systems for the study of human reproductive biology and highlight the importance of studying human consanguineous populations to discover novel monogenic causes of infertility. The rapid and continuous screening and identification of putative genetic defects coupled with an efficient functional characterization in animal models can reveal novel mechanisms of gene function in human reproductive tissues.


Asunto(s)
Fertilización , Gametogénesis , Diferenciación Sexual , Humanos , Gametogénesis/genética , Animales , Fertilización/genética , Diferenciación Sexual/genética , Secuencia Conservada/genética , Femenino , Masculino
3.
Clin Genet ; 105(4): 376-385, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38148624

RESUMEN

An estimated 1 in 10 000 people are born without the ability to smell, a condition known as congenital anosmia, and about one third of those people have non-syndromic, or isolated congenital anosmia (ICA). Despite the significant impact of olfaction for our quality of life, the underlying causes of ICA remain largely unknown. Using whole exome sequencing (WES) in 10 families and 141 individuals with ICA, we identified a candidate list of 162 rare, segregating, deleterious variants in 158 genes. We confirmed the involvement of CNGA2, a previously implicated ICA gene that is an essential component of the olfactory transduction pathway. Furthermore, we found a loss-of-function variant in SREK1IP1 from the family gene candidate list, which was also observed in 5% of individuals in an additional non-family cohort with ICA. Although SREK1IP1 has not been previously associated with olfaction, its role in zinc ion binding suggests a potential influence on olfactory signaling. This study provides a more comprehensive understanding of the spectrum of genetic alterations and their etiology in ICA patients, which may improve the diagnosis, prognosis, and treatment of this disorder and lead to better understanding of the mechanisms governing basic olfactory function.


Asunto(s)
Trastornos del Olfato , Trastornos del Olfato/congénito , Calidad de Vida , Humanos , Trastornos del Olfato/genética , Trastornos del Olfato/diagnóstico , Mutación , Transducción de Señal , Olfato/genética , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética
4.
Nat Rev Genet ; 24(3): 142, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36471017
5.
J Immunol ; 207(9): 2195-2202, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34663591

RESUMEN

Sepsis develops after a dysregulated host inflammatory response to a systemic infection. Identification of sepsis biomarkers has been challenging because of the multifactorial causes of disease susceptibility and progression. Public transcriptomic data are a valuable resource for mechanistic discoveries and cross-studies concordance of heterogeneous diseases. Nonetheless, the approach requires structured methodologies and effective visualization tools for meaningful data interpretation. Currently, no such database exists for sepsis or systemic inflammatory diseases in human. Hence we curated SysInflam HuDB (http://sepsis.gxbsidra.org/dm3/geneBrowser/list), a unique collection of human blood transcriptomic datasets associated with systemic inflammatory responses to sepsis. The transcriptome collection and the associated clinical metadata are integrated onto a user-friendly and Web-based interface that allows the simultaneous exploration, visualization, and interpretation of multiple datasets stemming from different study designs. To date, the collection encompasses 62 datasets and 5719 individual profiles. Concordance of gene expression changes with the associated literature was assessed, and additional analyses are presented to showcase database utility. Combined with custom data visualization at the group and individual levels, SysInflam HuDB facilitates the identification of specific human blood gene signatures in response to infection (e.g., patients with sepsis versus healthy control subjects) and the delineation of major genetic drivers associated with inflammation onset and progression under various conditions.


Asunto(s)
Células Sanguíneas/fisiología , Inflamación/inmunología , Sepsis/inmunología , Minería de Datos , Bases de Datos como Asunto , Conjuntos de Datos como Asunto , Perfilación de la Expresión Génica , Humanos , Internet , Programas Informáticos , Transcriptoma , Interfaz Usuario-Computador
6.
Int J Mol Sci ; 24(17)2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37685855

RESUMEN

There is wide variation in how individuals perceive the chemosensory attributes of liquid formulations of ibuprofen, encompassing both adults and children. To understand personal variation in the taste and chemesthesis properties of this medicine, and how to measure it, our first scientific strategy centered on utilizing trained adult panelists, due to the complex and time-consuming psychophysical tasks needed at this initial stage. We conducted a double-blind cohort study in which panelists underwent whole-genome-wide genotyping and psychophysically evaluated an over-the-counter pediatric medicine containing ibuprofen. Associations between sensory phenotypes and genetic variation near/within irritant and taste receptor genes were determined. Panelists who experienced the urge to cough or throat sensations found the medicine less palatable and sweet, and more irritating. Perceptions varied with genetic ancestry; panelists of African genetic ancestry had fewer chemesthetic sensations, rating the medicine sweeter, less irritating, and more palatable than did those of European genetic ancestry. We discovered a novel association between TRPA1 rs11988795 and tingling sensations, independent of ancestry. We also determined for the first time that just tasting the medicine allowed predictions of perceptions after swallowing, simplifying future psychophysical studies on diverse populations of different age groups needed to understand genetic, cultural-dietary, and epigenetic factors that influence individual perceptions of palatability and, in turn, adherence and the risk of accidental ingestion.


Asunto(s)
Ibuprofeno , Gusto , Estudios de Cohortes , Variación Genética , Percepción , Sensación , Gusto/genética , Humanos , Administración Oral , Formas de Dosificación
7.
Int J Mol Sci ; 24(22)2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38003551

RESUMEN

The leptin-melanocortin pathway is pivotal in appetite and energy homeostasis. Pathogenic variants in genes involved in this pathway lead to severe early-onset monogenic obesity (MO). The MC4R gene plays a central role in leptin-melanocortin signaling, and heterozygous variants in this gene are the most common cause of MO. A targeted gene panel consisting of 52 obesity-related genes was used to screen for variants associated with obesity. Variants were analyzed and filtered to identify potential disease-causing activity and validated using Sanger sequencing. We identified two novel heterozygous variants, c.253A>G p.Ser85Gly and c.802T>C p.Tyr268His, in the MC4R gene in two unrelated patients with morbid obesity and evaluated the functional impact of these variants. The impact of the variants on the MC4R gene was assessed using in silico prediction tools and molecular dynamics simulation. To further study the pathogenicity of the identified variants, GT1-7 cells were transfected with plasmid DNA encoding either wild-type or mutant MC4R variants. The effects of allelic variations in the MC4R gene on cAMP synthesis, MC4R protein level, and activation of PKA, ERB, and CREB signaling pathways in both stimulated and unstimulated ɑ-MSH paradigms were determined for their functional implications. In silico analysis suggested that the variants destabilized the MC4R structure and affected the overall dynamics of the MC4R protein, possibly leading to intracellular receptor retention. In vitro analysis of the functional impact of these variants showed a significant reduction in cell surface receptor expression and impaired extracellular ligand binding activity, leading to reduced cAMP production. Our analysis shows that the variants do not affect total protein expression; however, they are predicted to affect the post-translational localization of the MC4R protein to the cell surface and impair downstream signaling cascades such as PKA, ERK, and CREB signaling pathways. This finding might help our patients to benefit from the novel therapeutic advances for monogenic forms of obesity.


Asunto(s)
Leptina , Obesidad Mórbida , Humanos , Leptina/genética , Obesidad Mórbida/genética , Qatar , Alelos , alfa-MSH/farmacología , Receptor de Melanocortina Tipo 4/genética , Receptor de Melanocortina Tipo 4/metabolismo , Mutación
8.
Int J Mol Sci ; 23(8)2022 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-35457241

RESUMEN

Congenital hypogonadotropic hypogonadism (CHH) is a rare reproductive endocrine disorder characterized by complete or partial failure of pubertal development and infertility due to deficiency of the gonadotropin-releasing hormone (GnRH). CHH has a significant clinical heterogeneity and can be caused by mutations in over 30 genes. The aim of this study was to investigate the genetic defect in two siblings with CHH. A woman with CHH associated with anosmia and her brother with normosmic CHH were investigated by whole exome sequencing. The genetic studies revealed a novel heterozygous missense mutation in the Fibroblast Growth Factor Receptor 1 (FGFR1) gene (NM_023110.3: c.242T>C, p.Ile81Thr) in the affected siblings and in their unaffected father. The mutation affected a conserved amino acid within the first Ig-like domain (D1) of the protein, was predicted to be pathogenic by structure and sequence-based prediction methods, and was absent in ethnically matched controls. These were consistent with a critical role for the identified missense mutation in the activity of the FGFR1 protein. In conclusion, our identification of a novel missense mutation of the FGFR1 gene associated with a variable expression and incomplete penetrance of CHH extends the known mutational spectrum of this gene and may contribute to the understanding of the pathogenesis of CHH.


Asunto(s)
Hipogonadismo , Síndrome de Kallmann , Femenino , Humanos , Hipogonadismo/genética , Hipogonadismo/metabolismo , Síndrome de Kallmann/genética , Masculino , Mutación , Mutación Missense , Portugal , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo
9.
Cell Tissue Res ; 383(1): 445-456, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33409650

RESUMEN

Noses are extremely sophisticated chemical detectors allowing animals to use scents to interpret and navigate their environments. Odor detection starts with the activation of odorant receptors (ORs), expressed in mature olfactory sensory neurons (OSNs) populating the olfactory mucosa. Different odorants, or different concentrations of the same odorant, activate unique ensembles of ORs. This mechanism of combinatorial receptor coding provided a possible explanation as to why different odorants are perceived as having distinct odors. Aided by new technologies, several recent studies have found that antagonist interactions also play an important role in the formation of the combinatorial receptor code. These findings mark the start of a new era in the study of odorant-receptor interactions and add a new level of complexity to odor coding in mammals.


Asunto(s)
Odorantes , Neuronas Receptoras Olfatorias/fisiología , Animales , Mamíferos
10.
Chem Senses ; 462021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33367502

RESUMEN

In a preregistered, cross-sectional study, we investigated whether olfactory loss is a reliable predictor of COVID-19 using a crowdsourced questionnaire in 23 languages to assess symptoms in individuals self-reporting recent respiratory illness. We quantified changes in chemosensory abilities during the course of the respiratory illness using 0-100 visual analog scales (VAS) for participants reporting a positive (C19+; n = 4148) or negative (C19-; n = 546) COVID-19 laboratory test outcome. Logistic regression models identified univariate and multivariate predictors of COVID-19 status and post-COVID-19 olfactory recovery. Both C19+ and C19- groups exhibited smell loss, but it was significantly larger in C19+ participants (mean ± SD, C19+: -82.5 ± 27.2 points; C19-: -59.8 ± 37.7). Smell loss during illness was the best predictor of COVID-19 in both univariate and multivariate models (ROC AUC = 0.72). Additional variables provide negligible model improvement. VAS ratings of smell loss were more predictive than binary chemosensory yes/no-questions or other cardinal symptoms (e.g., fever). Olfactory recovery within 40 days of respiratory symptom onset was reported for ~50% of participants and was best predicted by time since respiratory symptom onset. We find that quantified smell loss is the best predictor of COVID-19 amongst those with symptoms of respiratory illness. To aid clinicians and contact tracers in identifying individuals with a high likelihood of having COVID-19, we propose a novel 0-10 scale to screen for recent olfactory loss, the ODoR-19. We find that numeric ratings ≤2 indicate high odds of symptomatic COVID-19 (4 < OR < 10). Once independently validated, this tool could be deployed when viral lab tests are impractical or unavailable.


Asunto(s)
Anosmia/diagnóstico , COVID-19/diagnóstico , Adulto , Anosmia/etiología , COVID-19/complicaciones , Estudios Transversales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , SARS-CoV-2/aislamiento & purificación , Autoinforme , Olfato
11.
Chem Senses ; 45(7): 609-622, 2020 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-32564071

RESUMEN

Recent anecdotal and scientific reports have provided evidence of a link between COVID-19 and chemosensory impairments, such as anosmia. However, these reports have downplayed or failed to distinguish potential effects on taste, ignored chemesthesis, and generally lacked quantitative measurements. Here, we report the development, implementation, and initial results of a multilingual, international questionnaire to assess self-reported quantity and quality of perception in 3 distinct chemosensory modalities (smell, taste, and chemesthesis) before and during COVID-19. In the first 11 days after questionnaire launch, 4039 participants (2913 women, 1118 men, and 8 others, aged 19-79) reported a COVID-19 diagnosis either via laboratory tests or clinical assessment. Importantly, smell, taste, and chemesthetic function were each significantly reduced compared to their status before the disease. Difference scores (maximum possible change ±100) revealed a mean reduction of smell (-79.7 ± 28.7, mean ± standard deviation), taste (-69.0 ± 32.6), and chemesthetic (-37.3 ± 36.2) function during COVID-19. Qualitative changes in olfactory ability (parosmia and phantosmia) were relatively rare and correlated with smell loss. Importantly, perceived nasal obstruction did not account for smell loss. Furthermore, chemosensory impairments were similar between participants in the laboratory test and clinical assessment groups. These results show that COVID-19-associated chemosensory impairment is not limited to smell but also affects taste and chemesthesis. The multimodal impact of COVID-19 and the lack of perceived nasal obstruction suggest that severe acute respiratory syndrome coronavirus strain 2 (SARS-CoV-2) infection may disrupt sensory-neural mechanisms.


Asunto(s)
Betacoronavirus/aislamiento & purificación , Infecciones por Coronavirus/complicaciones , Trastornos del Olfato/etiología , Neumonía Viral/complicaciones , Trastornos Somatosensoriales/etiología , Trastornos del Gusto/etiología , Adulto , Anciano , COVID-19 , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/virología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Trastornos del Olfato/virología , Pandemias , Neumonía Viral/diagnóstico , Neumonía Viral/virología , SARS-CoV-2 , Autoinforme , Olfato , Trastornos Somatosensoriales/virología , Encuestas y Cuestionarios , Gusto , Trastornos del Gusto/virología , Adulto Joven
12.
Chem Senses ; 44(1): 7-9, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30445540

RESUMEN

Aiming to unravel interspecific differences in olfactory preferences, we performed comparative studies of odor valence in flies, mice, and humans. Our analysis suggests a model where flies and mice share similar olfactory preferences, but neither species share odor preferences with humans. This model contrasts with a previous study by Mandairon et al., which suggested that the olfactory preferences of mice and humans are similar. A probabilistic examination revealed that underpowered studies can result in spurious significant correlations, which can account for the differences between both studies. Future analyses aimed at dissecting the olfactory preferences across species need to test large numbers of odorants to stress-test the model proposed here and identify robust associations.


Asunto(s)
Dípteros/fisiología , Percepción Olfatoria/fisiología , Animales , Humanos , Ratones , Odorantes/análisis
13.
Proc Natl Acad Sci U S A ; 113(23): E3300-6, 2016 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-27208093

RESUMEN

The mechanisms by which odors induce instinctive behaviors are largely unknown. Odor detection in the mouse nose is mediated by >1, 000 different odorant receptors (ORs) and trace amine-associated receptors (TAARs). Odor perceptions are encoded combinatorially by ORs and can be altered by slight changes in the combination of activated receptors. However, the stereotyped nature of instinctive odor responses suggests the involvement of specific receptors and genetically programmed neural circuits relatively immune to extraneous odor stimuli and receptor inputs. Here, we report that, contrary to expectation, innate odor-induced behaviors can be context-dependent. First, different ligands for a given TAAR can vary in behavioral effect. Second, when combined, some attractive and aversive odorants neutralize one another's behavioral effects. Both a TAAR ligand and a common odorant block aversion to a predator odor, indicating that this ability is not unique to TAARs and can extend to an aversive response of potential importance to survival. In vitro testing of single receptors with binary odorant mixtures indicates that behavioral blocking can occur without receptor antagonism in the nose. Moreover, genetic ablation of a single receptor prevents its cognate ligand from blocking predator odor aversion, indicating that the blocking requires sensory input from the receptor. Together, these findings indicate that innate odor-induced behaviors can depend on context, that signals from a single receptor can block innate odor aversion, and that instinctive behavioral responses to odors can be modulated by interactions in the brain among signals derived from different receptors.


Asunto(s)
Conducta Animal/fisiología , Odorantes , Receptores Odorantes/fisiología , Animales , Células HEK293 , Humanos , Ligandos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Percepción Olfatoria/fisiología , Neuronas Receptoras Olfatorias/fisiología , Receptores Acoplados a Proteínas G/deficiencia , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/fisiología , Transducción de Señal , Olfato/fisiología
14.
PLoS Genet ; 10(9): e1004593, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25187969

RESUMEN

The olfactory (OR) and vomeronasal receptor (VR) repertoires are collectively encoded by 1700 genes and pseudogenes in the mouse genome. Most OR and VR genes were identified by comparative genomic techniques and therefore, in many of those cases, only their protein coding sequences are defined. Some also lack experimental support, due in part to the similarity between them and their monogenic, cell-specific expression in olfactory tissues. Here we use deep RNA sequencing, expression microarray and quantitative RT-PCR in both the vomeronasal organ and whole olfactory mucosa to quantify their full transcriptomes in multiple male and female mice. We find evidence of expression for all VR, and almost all OR genes that are annotated as functional in the reference genome, and use the data to generate over 1100 new, multi-exonic, significantly extended receptor gene annotations. We find that OR and VR genes are neither equally nor randomly expressed, but have reproducible distributions of abundance in both tissues. The olfactory transcriptomes are only minimally different between males and females, suggesting altered gene expression at the periphery is unlikely to underpin the striking sexual dimorphism in olfactory-mediated behavior. Finally, we present evidence that hundreds of novel, putatively protein-coding genes are expressed in these highly specialized olfactory tissues, and carry out a proof-of-principle validation. Taken together, these data provide a comprehensive, quantitative catalog of the genes that mediate olfactory perception and pheromone-evoked behavior at the periphery.


Asunto(s)
Mucosa Olfatoria/patología , Percepción Olfatoria/genética , Receptores Odorantes/genética , Olfato/genética , Transcriptoma/genética , Animales , Femenino , Expresión Génica/genética , Genoma/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Seudogenes/genética , Órgano Vomeronasal/fisiología
16.
Methods ; 85: 54-61, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26142758

RESUMEN

The transcriptome of single cells can reveal important information about cellular states and heterogeneity within populations of cells. Recently, single-cell RNA-sequencing has facilitated expression profiling of large numbers of single cells in parallel. To fully exploit these data, it is critical that suitable computational approaches are developed. One key challenge, especially pertinent when considering dividing populations of cells, is to understand the cell-cycle stage of each captured cell. Here we describe and compare five established supervised machine learning methods and a custom-built predictor for allocating cells to their cell-cycle stage on the basis of their transcriptome. In particular, we assess the impact of different normalisation strategies and the usage of prior knowledge on the predictive power of the classifiers. We tested the methods on previously published datasets and found that a PCA-based approach and the custom predictor performed best. Moreover, our analysis shows that the performance depends strongly on normalisation and the usage of prior knowledge. Only by leveraging prior knowledge in form of cell-cycle annotated genes and by preprocessing the data using a rank-based normalisation, is it possible to robustly capture the transcriptional cell-cycle signature across different cell types, organisms and experimental protocols.


Asunto(s)
Ciclo Celular/fisiología , Perfilación de la Expresión Génica/métodos , Aprendizaje Automático , Análisis de la Célula Individual/métodos , Transcriptoma/fisiología , Animales , Línea Celular Tumoral , Biología Computacional/métodos , Células Madre Embrionarias/fisiología , Hepatocitos/fisiología , Humanos , Ratones
17.
Proc Natl Acad Sci U S A ; 110(48): 19579-84, 2013 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-24218586

RESUMEN

Carrion smell is strongly repugnant to humans and triggers distinct innate behaviors in many other species. This smell is mainly carried by two small aliphatic diamines, putrescine and cadaverine, which are generated by bacterial decarboxylation of the basic amino acids ornithine and lysine. Depending on the species, these diamines may also serve as feeding attractants, oviposition attractants, or social cues. Behavioral responses to diamines have not been investigated in zebrafish, a powerful model system for studying vertebrate olfaction. Furthermore, olfactory receptors that detect cadaverine and putrescine have not been identified in any species so far. Here, we show robust olfactory-mediated avoidance behavior of zebrafish to cadaverine and related diamines, and concomitant activation of sparse olfactory sensory neurons by these diamines. The large majority of neurons activated by low concentrations of cadaverine expresses a particular olfactory receptor, trace amine-associated receptor 13c (TAAR13c). Structure-activity analysis indicates TAAR13c to be a general diamine sensor, with pronounced selectivity for odd chains of medium length. This receptor can also be activated by decaying fish extracts, a physiologically relevant source of diamines. The identification of a sensitive zebrafish olfactory receptor for these diamines provides a molecular basis for studying neural circuits connecting sensation, perception, and innate behavior.


Asunto(s)
Conducta Apetitiva/efectos de los fármacos , Cadaverina/metabolismo , Putrescina/metabolismo , Receptores Acoplados a Proteínas G/fisiología , Receptores Odorantes/fisiología , Pez Cebra/fisiología , Animales , Western Blotting , Cadaverina/química , Cadaverina/farmacología , Cromatografía Liquida , Clonación Molecular , Inmunohistoquímica , Espectrometría de Masas , Filogenia , Putrescina/química , Putrescina/farmacología , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/metabolismo
18.
J Neurosci ; 34(37): 12241-52, 2014 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-25209267

RESUMEN

The mammalian olfactory system detects a plethora of environmental chemicals that are perceived as odors or stimulate instinctive behaviors. Studies using odorant receptor (OR) genes have provided insight into the molecular and organizational strategies underlying olfaction in mice. One important unanswered question, however, is whether these strategies are conserved in primates. To explore this question, we examined the macaque, a higher primate phylogenetically close to humans. Here we report that the organization of sensory inputs in the macaque nose resembles that in mouse in some respects, but not others. As in mouse, neurons with different ORs are interspersed in the macaque nose, and there are spatial zones that differ in their complement of ORs and extend axons to different domains in the olfactory bulb of the brain. However, whereas the mouse has multiple discrete band-like zones, the macaque appears to have only two broad zones. It is unclear whether the organization of OR inputs in a rodent/primate common ancestor degenerated in primates or, alternatively became more sophisticated in rodents. The mouse nose has an additional small family of chemosensory receptors, called trace amine-associated receptors (TAARs), which may detect social cues. Here we find that TAARs are also expressed in the macaque nose, suggesting that TAARs may also play a role in human olfactory perception. We further find that one human TAAR responds to rotten fish, suggesting a possible role as a sentinel to discourage ingestion of food harboring pathogenic microorganisms.


Asunto(s)
Macaca mulatta/fisiología , Mucosa Olfatoria/fisiología , Receptores Odorantes/metabolismo , Olfato/fisiología , Animales , Tipificación del Cuerpo/fisiología , Masculino , Ratones , Ratas , Receptores Acoplados a Proteínas G/metabolismo , Especificidad de la Especie , Distribución Tisular
19.
bioRxiv ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38854010

RESUMEN

Genome sequencing efforts have led to the discovery of tens of millions of protein missense variants found in the human population with the majority of these having no annotated role and some likely contributing to trait variation and disease. Sequence-based artificial intelligence approaches have become highly accurate at predicting variants that are detrimental to the function of proteins but they do not inform on mechanisms of disruption. Here we combined sequence and structure-based methods to perform proteome-wide prediction of deleterious variants with information on their impact on protein stability, protein-protein interactions and small-molecule binding pockets. AlphaFold2 structures were used to predict approximately 100,000 small-molecule binding pockets and stability changes for over 200 million variants. To inform on protein-protein interfaces we used AlphaFold2 to predict structures for nearly 500,000 protein complexes. We illustrate the value of mechanism-aware variant effect predictions to study the relation between protein stability and abundance and the structural properties of interfaces underlying trans protein quantitative trait loci (pQTLs). We characterised the distribution of mechanistic impacts of protein variants found in patients and experimentally studied example disease linked variants in FGFR1.

20.
Front Endocrinol (Lausanne) ; 15: 1394263, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38904042

RESUMEN

Introduction: Caloric restriction (CR) is a nutritional intervention that increases life expectancy while lowering the risk for cardio-metabolic disease. Its effects on bone health, however, remain controversial. For instance, CR has been linked to increased accumulation of bone marrow adipose tissue (BMAT) in long bones, a process thought to elicit detrimental effects on bone. Qualitative differences have been reported in BMAT in relation to its specific anatomical localization, subdividing it into physiological and potentially pathological BMAT. We here examine the local impact of CR on bone composition, microstructure and its endocrine profile in the context of aging. Methods: Young and aged male C57Bl6J mice were subjected to CR for 8 weeks and were compared to age-matched littermates with free food access. We assessed bone microstructure and BMAT by micro-CT, bone fatty acid and transcriptomic profiles, and bone healing. Results: CR increased tibial BMAT accumulation and adipogenic gene expression. CR also resulted in elevated fatty acid desaturation in the proximal and mid-shaft regions of the tibia, thus more closely resembling the biochemical lipid profile of the distally located, physiological BMAT. In aged mice, CR attenuated trabecular bone loss, suggesting that CR may revert some aspects of age-related bone dysfunction. Cortical bone, however, was decreased in young mice on CR and remained reduced in aged mice, irrespective of dietary intervention. No negative effects of CR on bone regeneration were evident in either young or aged mice. Discussion: Our findings indicate that the timing of CR is critical and may exert detrimental effects on bone biology if administered during a phase of active skeletal growth. Conversely, CR exerts positive effects on trabecular bone structure in the context of aging, which occurs despite substantial accumulation of BMAT. These data suggest that the endocrine profile of BMAT, rather than its fatty acid composition, contributes to healthy bone maintenance in aged mice.


Asunto(s)
Adipocitos , Envejecimiento , Restricción Calórica , Hueso Esponjoso , Ratones Endogámicos C57BL , Animales , Masculino , Restricción Calórica/métodos , Ratones , Envejecimiento/fisiología , Hueso Esponjoso/patología , Adipocitos/metabolismo , Médula Ósea/metabolismo , Tibia/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda