Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Planta ; 259(3): 54, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38294548

RESUMEN

MAIN CONCLUSION: Using Raman micro-spectroscopy on tef roots, we could monitor cell wall maturation in lines with varied genetic lodging tendency. We describe the developing cell wall composition in root endodermis and cylinder tissue. Tef [Eragrostis tef (Zucc.) Trotter] is an important staple crop in Ethiopia and Eritrea, producing gluten-free and protein-rich grains. However, this crop is not adapted to modern farming practices due to high lodging susceptibility, which prevents the application of mechanical harvest. Lodging describes the displacement of roots (root lodging) or fracture of culms (stem lodging), forcing plants to bend or fall from their vertical position, causing significant yield losses. In this study, we aimed to understand the microstructural properties of crown roots, underlining tef tolerance/susceptibility to lodging. We analyzed plants at 5 and 10 weeks after emergence and compared trellised to lodged plants. Root cross sections from different tef genotypes were characterized by scanning electron microscopy, micro-computed tomography, and Raman micro-spectroscopy. Lodging susceptible genotypes exhibited early tissue maturation, including developed aerenchyma, intensive lignification, and lignin with high levels of crosslinks. A comparison between trellised and lodged plants suggested that lodging itself does not affect the histology of root tissue. Furthermore, cell wall composition along plant maturation was typical to each of the tested genotypes independently of trellising. Our results suggest that it is possible to select lines that exhibit slow maturation of crown roots. Such lines are predicted to show reduction in lodging and facilitate mechanical harvest.


Asunto(s)
Eragrostis , Microtomografía por Rayos X , Agricultura , Diferenciación Celular , Pared Celular
2.
Int J Mol Sci ; 23(18)2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-36142488

RESUMEN

The objectives of this study were to identify genetic loci in the bread wheat genome that would influence yield stability and quality under water stress, and to identify accessions that can be recommended for cultivation in dry and hot regions. We performed a genome-wide association study (GWAS) using a panel of 232 wheat accessions spanning diverse ecogeographic regions. Plants were evaluated in the Israeli Northern Negev, under two environments: water-limited (D; 250 mm) and well-watered (W; 450 mm) conditions; they were genotyped with ~71,500 SNPs derived from exome capture sequencing. Of the 14 phenotypic traits evaluated, 12 had significantly lower values under D compared to W conditions, while the values for two traits were higher under D. High heritability (H2 = 0.5-0.9) was observed for grain yield, spike weight, number of grains per spike, peduncle length, and plant height. Days to heading and grain yield could be partitioned based on accession origins. GWAS identified 154 marker-trait associations (MTAs) for yield and quality-related traits, 82 under D and 72 under W, and identified potential candidate genes. We identified 24 accessions showing high and/or stable yields under D conditions that can be recommended for cultivation in regions under the threat of global climate change.


Asunto(s)
Estudio de Asociación del Genoma Completo , Triticum , Pan , Grano Comestible/genética , Genómica , Fenotipo , Sitios de Carácter Cuantitativo , Triticum/genética
3.
Plant J ; 101(3): 555-572, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31571297

RESUMEN

Dissection of the genetic basis of wheat ionome is crucial for understanding the physiological and biochemical processes underlying mineral accumulation in seeds, as well as for efficient crop breeding. Most of the elements essential for plants are metals stored in seeds as chelate complexes with phytic acid or sulfur-containing compounds. We assume that the involvement of phosphorus and sulfur in metal chelation is the reason for strong phenotypic correlations within ionome. Adjustment of element concentrations for the effect of variation in phosphorus and sulfur seed content resulted in drastic change of phenotypic correlations between the elements. The genetic architecture of wheat grain ionome was characterized by quantitative trait loci (QTL) analysis using a cross between durum and wild emmer wheat. QTL analysis of the adjusted traits and two-trait analysis of the initial traits paired with either P or S considerably improved QTL detection power and accuracy, resulting in the identification of 105 QTLs and 617 QTL effects for 11 elements. Candidate gene search revealed some potential functional associations between QTLs and corresponding genes within their intervals. Thus, we have shown that accounting for variation in P and S is crucial for understanding of the physiological and genetic regulation of mineral composition of wheat grain ionome and can be implemented for other plants.


Asunto(s)
Fósforo/metabolismo , Sitios de Carácter Cuantitativo/genética , Azufre/metabolismo , Triticum/genética , Cruzamiento , Grano Comestible , Fenotipo , Semillas/genética , Semillas/fisiología , Triticum/fisiología
4.
Int J Mol Sci ; 22(4)2021 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-33572141

RESUMEN

Phenotypic plasticity is one of the main mechanisms of adaptation to abiotic stresses via changes in critical developmental stages. Altering flowering phenology is a key evolutionary strategy of plant adaptation to abiotic stresses, to achieve the maximum possible reproduction. The current study is the first to apply the linear regression residuals as drought plasticity scores while considering the variation in flowering phenology and traits under non-stress conditions. We characterized the genomic architecture of 17 complex traits and their drought plasticity scores for quantitative trait loci (QTL) mapping, using a mapping population derived from a cross between durum wheat (Triticum turgidum ssp. durum) and wild emmer wheat (T. turgidum ssp. dicoccoides). We identified 79 QTLs affected observed traits and their plasticity scores, of which 33 reflected plasticity in response to water stress and exhibited epistatic interactions and/or pleiotropy between the observed and plasticity traits. Vrn-B3 (TaTF1) residing within an interval of a major drought-escape QTL was proposed as a candidate gene. The favorable alleles for most of the plasticity QTLs were contributed by wild emmer wheat, demonstrating its high potential for wheat improvement. Our study presents a new approach for the quantification of plant adaptation to various stresses and provides new insights into the genetic basis of wheat complex traits under water-deficit stress.


Asunto(s)
Aclimatación/genética , Cromosomas de las Plantas/genética , Sequías , Sitios de Carácter Cuantitativo , Triticum/fisiología , Alelos , Mapeo Cromosómico , Estrés Fisiológico , Tetraploidía
5.
Mol Ecol ; 29(22): 4322-4336, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32964548

RESUMEN

Isolation by environment (IBE) is a widespread phenomenon in nature. It is commonly expected that the degree of difference among environments is proportional to the level of divergence between populations in their respective environments. It is therefore assumed that a species' genetic diversity displays a pattern of IBE in the presence of a strong environmental cline if gene flow does not mitigate isolation. We tested this common assumption by analysing the genetic diversity and demographic history of Pisum fulvum, which inhabits contrasting habitats in the southern Levant and is expected to display only minor migration rates between populations, making it an ideal test case. Ecogeographical and subpopulation structure were analysed and compared. The correlation of genetic with environmental distances was calculated to test the effect of isolation by distance and IBE and detect the main drivers of these effects. Historical effective population size was estimated using stairway plot. Limited overlap of ecogeographical and genetic clustering was observed, and correlation between genetic and environmental distances was statistically significant but small. We detected a sharp decline of effective population size during the last glacial period. The low degree of IBE may be the result of genetic drift due to a past bottleneck. Our findings contradict the expectation that strong environmental clines cause IBE in the absence of extensive gene flow.


Asunto(s)
Variación Genética , Pisum sativum , Ambiente , Flujo Génico , Flujo Genético , Genética de Población
6.
BMC Genomics ; 17(1): 1047, 2016 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-27993127

RESUMEN

BACKGROUND: The metabolite content of a seed and its ability to germinate are determined by genetic makeup and environmental effects during development. The interaction between genetics, environment and seed metabolism and germination was studied in 72 tomato homozygous introgression lines (IL) derived from Solanum pennelli and S. esculentum M82 cultivar. Plants were grown in the field under saline and fresh water irrigation during two consecutive seasons, and collected seeds were subjected to morphological analysis, gas chromatograph-mass spectrometry (GC-MS) metabolic profiling and germination tests. RESULTS: Seed weight was under tight genetic regulation, but it was not related to germination vigor. Salinity significantly reduced seed number but had little influence on seed metabolites, affecting only 1% of the statistical comparisons. The metabolites negatively correlated to germination were simple sugars and most amino acids, while positive correlations were found for several organic acids and the N metabolites urea and dopamine. Germination tests identified putative loci for improved germination as compared to M82 and in response to salinity, which were also characterized by defined metabolic changes in the seed. CONCLUSIONS: An integrative analysis of the metabolite and germination data revealed metabolite levels unambiguously associated with germination percentage and rate, mostly conserved in the different tested seed development environments. Such consistent relations suggest the potential for developing a method of germination vigor prediction by metabolic profiling, as well as add to our understanding of the importance of primary metabolic processes in germination.


Asunto(s)
Metabolismo Energético , Ambiente , Interacción Gen-Ambiente , Germinación/genética , Semillas/genética , Semillas/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Estudios de Asociación Genética , Genética de Población , Fenotipo , Carácter Cuantitativo Heredable , Salinidad
7.
BMC Genomics ; 16: 777, 2015 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-26462652

RESUMEN

BACKGROUND: Wheat domestication is considered as one of the most important events in the development of human civilization. Wheat spikelets have undergone significant changes during evolution under domestication, resulting in soft glumes and larger kernels that are released easily upon threshing. Our main goal was to explore changes in transcriptome expression in glumes that accompanied wheat evolution under domestication. METHODS: A total of six tetraploid wheat accessions were selected for transcriptome profiling based on their rachis brittleness and glumes toughness. RNA pools from glumes of the central spikelet at heading time were used to construct cDNA libraries for sequencing. The trimmed reads from each library were separately aligned to the reference sub-genomes A and B, which were extracted from wheat survey sequence. Differentially expression analysis and functional annotation were performed between wild and domesticated wheat, to identity candidate genes associated with evolution under domestication. Selected candidate genes were validated using real time PCR. RESULTS: Transcriptome profiles of wild emmer wheat, wheat landraces, and wheat cultivars were compared using next generation sequencing (RNA-seq). We have found a total of 194,893 transcripts, of which 73,150 were shared between wild, landraces, and cultivars. From 781 differentially expressed genes (DEGs), 336 were down-regulated and 445 were up-regulated in the domesticated compared to wild wheat genotypes. Gene Ontology (GO) annotation assigned 293 DEGs (37.5 %) to GO term groups, of which 134 (17.1 %) were down-regulated and 159 (20.4 %) up-regulated in the domesticated wheat. Some of the down-regulated DEGs in domesticated wheat are related to the biosynthetic pathways that eventually define the mechanical strength of the glumes, such as cell wall, lignin, pectin and wax biosynthesis. The reduction in gene expression of such genes, may explain the softness of the glumes in the domesticated forms. In addition, we have identified genes involved in nutrient remobilization that may affect grain size and other agronomic traits evolved under domestication. CONCLUSIONS: The comparison of RNA-seq profiles between glumes of wheat groups differing in glumes toughness and rachis brittleness revealed a few DEGs that may be involved in glumes toughness and nutrient remobilization. These genes may be involved in processes of wheat improvement under domestication.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Transcriptoma/genética , Triticum/genética , ADN Complementario/genética , Perfilación de la Expresión Génica , Ontología de Genes , Genotipo , Humanos , Anotación de Secuencia Molecular , Fenotipo , Tetraploidía
8.
Front Plant Sci ; 15: 1406173, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39045591

RESUMEN

Global climate change is leading to increased frequency of extreme climatic events, higher temperatures and water scarcity. Tef (Eragrostis tef (Zucc.) Trotter) is an underutilized C4 cereal crop that harbors a rich gene pool for stress resilience and nutritional quality. Despite gaining increasing attention as an "opportunity" crop, physiological responses and adaptive mechanisms of tef to drought stress have not been sufficiently investigated. This study was aimed to characterize the dynamic physiological responses of tef to drought. Six selected tef genotypes were subjected to high-throughput whole-plant functional phenotyping to assess multiple physiological responses to contrasting water regimes. Drought stress led to a substantial reduction in total, shoot and root dry weights, by 59%, 62% and 44%, respectively (averaged across genotypes), and an increase of 50% in the root-to-shoot ratio, relative to control treatment. Drought treatment induced also significant reductions in stomatal conductance, transpiration, osmotic potential and water-use efficiency, increased chlorophyll content and delayed heading. Tef genotypes exhibited diverse water-use strategies under drought: water-conserving (isohydric) or non-conserving (anisohydric), or an intermediate strategy, as well as variation in drought-recovery rate. Genotype RTC-290b exhibited outstanding multifaceted drought-adaptive performance, including high water-use efficiency coupled with high productivity under drought and control treatments, high chlorophyll and transpiration under drought, and faster drought recovery rate. This study provides a first insight into the dynamic functional physiological responses of tef to water deficiency and the variation between genotypes in drought-adaptive strategies. These results may serve as a baseline for further studies and for the development of drought-resistant tef varieties.

9.
Ann Bot ; 112(5): 829-37, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23884398

RESUMEN

BACKGROUND AND AIMS: The harvesting method of wild and cultivated cereals has long been recognized as an important factor in the emergence of domesticated non-shattering ear genotypes. This study aimed to quantify the effects of spike brittleness and threshability on threshing time and efficiency in emmer wheat, and to evaluate the implications of post-harvest processes on domestication of cereals in the Near East. METHODS: A diverse collection of tetraploid wheat genotypes, consisting of Triticum turgidum ssp. dicoccoides - the wild progenitor of domesticated wheat - traditional landraces, modern cultivars (T. turgidum ssp. durum) and 150 recombinant (wild × modern) inbred lines, was used in replicated controlled threshing experiments to quantify the effects of spike brittleness and threshability on threshing time and efficiency. KEY RESULTS: The transition from a brittle hulled wild phenotype to non-brittle hulled phenotype (landraces) was associated with an approx. 30 % reduction in threshing time, whereas the transition from the latter to non-brittle free-threshing cultivars was associated with an approx. 85 % reduction in threshing time. Similar trends were obtained with groups of recombinant inbred lines showing extreme phenotypes of brittleness and threshability. CONCLUSIONS: In tetraploid wheat, both non-brittle spike and free-threshing are labour-saving traits that increase the efficiency of post-harvest processing, which could have been an incentive for rapid domestication of the Near Eastern cereals, thus refuting the recently proposed hypothesis regarding extra labour associated with the domesticated phenotype (non-brittle spike) and its presumed role in extending the domestication episode time frame.


Asunto(s)
Agricultura/métodos , Productos Agrícolas/anatomía & histología , Variación Genética , Triticum/anatomía & histología , Agricultura/normas , Productos Agrícolas/genética , Genotipo , Endogamia , Fenotipo , Tetraploidía , Triticum/genética
10.
Animals (Basel) ; 13(3)2023 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-36766359

RESUMEN

Tef is known as a multi-harvest crop with high production capacity and outstanding fodder quality. Hence, our overall goal is to develop tef as a new multi-harvest summer crop that can maintain high-quality feed and contribute to both field crops and the livestock industry in Israel. In this study, we aimed to evaluate the ability to preserve tef as silage. Four tef genotypes grown under well-watered (100%) and water-limited (75%) irrigation regimes were harvested at grain filling stage and ensiled with either no additives (control, CTL), or with heterofermentative inoculum (HI), molasses (MOL), and both MOL + HI. Our results showed for the first time that tef could be ensiled, although water-soluble carbohydrates (WSC) were lower than those in corn, "the perfect ensiling crop". Most of the tef silage qualitative parameters were better at water-limited irrigation. Additives HI or MOL or MOL + HI also improved silage parameters, e.g., lowered pH and ammonia nitrogen content, but increased in vitro dry matter digestibility, lactic acid and crude protein content, and lactic acid bacteria counts of tef silage. The current results imply increasing the diversity of local ruminant fodder crops, ensuring high-quality feed supply during the summer.

11.
Front Genet ; 13: 955295, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36339003

RESUMEN

Genetic diversity in wheat has been depleted due to domestication and modern breeding. Wild relatives are a valuable source for improving drought tolerance in domesticated wheat. A QTL region on chromosome 2BS of wild emmer wheat (Triticum turgidum ssp. dicoccoides), conferring high grain yield under well-watered and water-limited conditions, was transferred to the elite durum wheat cultivar Uzan (T. turgidum ssp. durum) by a marker-assisted backcross breeding approach. The 2B introgression line turned out to be higher yielding but also exhibited negative traits that likely result from trans-, cis-, or linkage drag effects from the wild emmer parent. In this study, the respective 2BS QTL was subjected to fine-mapping, and a set of 17 homozygote recombinants were phenotyped at BC4F5 generation under water-limited and well-watered conditions at an experimental farm in Israel and at a high-throughput phenotyping platform (LemnaTec-129) in Germany. In general, both experimental setups allowed the identification of sub-QTL intervals related to culm length, kernel number, thousand kernel weight, and harvest index. Sub-QTLs for kernel number and harvest index were detected specifically under either drought stress or well-watered conditions, while QTLs for culm length and thousand-kernel weight were detected in both conditions. Although no direct QTL for grain yield was identified, plants with the sub-QTL for kernel number showed a higher grain yield than the recurrent durum cultivar Uzan under well-watered and mild drought stress conditions. We, therefore, suggest that this sub-QTL might be of interest for future breeding purposes.

12.
Front Plant Sci ; 13: 965287, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36311121

RESUMEN

Drought events or the combination of drought and heat conditions are expected to become more frequent due to global warming, and wheat yields may fall below their long-term average. One way to increase climate-resilience of modern high-yielding varieties is by their genetic improvement with beneficial alleles from crop wild relatives. In the present study, the effect of two beneficial QTLs introgressed from wild emmer wheat and incorporated in the three wheat varieties BarNir, Zahir and Uzan was studied under well-watered conditions and under drought stress using non-destructive High-throughput Phenotyping (HTP) throughout the life cycle in a single pot-experiment. Plants were daily imaged with RGB top and side view cameras and watered automatically. Further, at two time points, the quantum yield of photosystem II was measured with a top view FluorCam. The QTL carrying near isogenic lines (NILs) were compared with their corresponding parents by t-test for all non-invasively obtained traits and for the manually determined agronomic and yield parameters. Data quality of phenotypic traits (repeatability) in the controlled HTP experiment was above 85% throughout the life cycle and at maturity. Drought stress had a strong effect on growth in all wheat genotypes causing biomass reduction from 2% up to 70% at early and late points in the drought period, respectively. At maturity, the drought caused 47-55% decreases in yield-related traits grain weight, straw weight and total biomass and reduced TKW by 10%, while water use efficiency (WUE) increased under drought by 29%. The yield-enhancing effect of the introgressed QTLs under drought conditions that were previously demonstrated under field/screenhouse conditions in Israel, could be mostly confirmed in a greenhouse pot experiment using HTP. Daily precision phenotyping enabled to decipher the mode of action of the QTLs in the different genetic backgrounds throughout the entire wheat life cycle. Daily phenotyping allowed a precise determination of the timing and size of the QTLs effect (s) and further yielded information about which image-derived traits are informative at which developmental stage of wheat during the entire life cycle. Maximum height and estimated biovolume were reached about a week after heading, so experiments that only aim at exploring these traits would not need a longer observation period. To obtain information on different onset and progress of senescence, the CVa curves represented best the ongoing senescence of plants. The QTL on 7A in the BarNir background was found to improve yield under drought by increased biomass growth, a higher photosynthetic performance, a higher WUE and a "stay green effect."

13.
Funct Integr Genomics ; 11(4): 565-83, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21656015

RESUMEN

Transcriptomic and metabolomic profiles were used to unravel drought adaptation mechanisms in wild emmer wheat (Triticum turgidum ssp. dicoccoides), the progenitor of cultivated wheat, by comparing the response to drought stress in roots of genotypes contrasting in drought tolerance. The differences between the drought resistant (R) and drought susceptible (S) genotypes were characterized mainly by shifts in expression of hormone-related genes (e.g., gibberellins, abscisic acid (ABA) and auxin), including biosynthesis, signalling and response; RNA binding; calcium (calmodulin, caleosin and annexin) and phosphatidylinositol signalling, in the R genotype. ABA content in the roots of the R genotype was higher in the well-watered treatment and increased in response to drought, while in the S genotype ABA was invariant. The metabolomic profiling revealed in the R genotype a higher accumulation of tricarboxylic acid cycle intermediates and drought-related metabolites, including glucose, trehalose, proline and glycine. The integration of transcriptomics and metabolomics results indicated that adaptation to drought included efficient regulation and signalling pathways leading to effective bio-energetic processes, carbon metabolism and cell homeostasis. In conclusion, mechanisms of drought tolerance were identified in roots of wild emmer wheat, supporting our previous studies on the potential of this genepool as a valuable source for novel candidate genes to improve drought tolerance in cultivated wheat.


Asunto(s)
Adaptación Fisiológica/genética , Vías Biosintéticas/genética , Sequías , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas/biosíntesis , Raíces de Plantas/genética , Triticum/genética , Señalización del Calcio , Expresión Génica , Perfilación de la Expresión Génica , Genes de Plantas , Metaboloma , Análisis de Secuencia por Matrices de Oligonucleótidos , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/metabolismo , Estrés Fisiológico , Triticum/metabolismo , Triticum/fisiología
14.
J Exp Bot ; 62(14): 5051-61, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21778183

RESUMEN

Wheat is undoubtedly one of the world's major food sources since the dawn of Near Eastern agriculture and up to the present day. Morphological, physiological, and genetic modifications involved in domestication and subsequent evolution under domestication were investigated in a tetraploid recombinant inbred line population, derived from a cross between durum wheat and its immediate progenitor wild emmer wheat. Experimental data were used to test previous assumptions regarding a protracted domestication process. The brittle rachis (Br) spike, thought to be a primary characteristic of domestication, was mapped to chromosome 2A as a single gene, suggesting, in light of previously reported Br loci (homoeologous group 3), a complex genetic model involved in spike brittleness. Twenty-seven quantitative trait loci (QTLs) conferring threshability and yield components (kernel size and number of kernels per spike) were mapped. The large number of QTLs detected in this and other studies suggests that following domestication, wheat evolutionary processes involved many genomic changes. The Br gene did not show either genetic (co-localization with QTLs) or phenotypic association with threshability or yield components, suggesting independence of the respective loci. It is argued here that changes in spike threshability and agronomic traits (e.g. yield and its components) are the outcome of plant evolution under domestication, rather than the result of a protracted domestication process. Revealing the genomic basis of wheat domestication and evolution under domestication, and clarifying their inter-relationships, will improve our understanding of wheat biology and contribute to further crop improvement.


Asunto(s)
Adaptación Biológica , Evolución Biológica , Triticum/genética , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Cruzamientos Genéticos , Fenotipo , Sitios de Carácter Cuantitativo , Carácter Cuantitativo Heredable , Triticum/fisiología
15.
Physiol Plant ; 141(3): 265-75, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21143238

RESUMEN

Quantitative trait loci (QTLs) for yield and drought-related traits were exchanged via marker-assisted selection between elite cultivars of two cotton species, Gossypium barbadense (GB) cv. F-177 and Gossypium hirsutum (GH) cv. Siv'on. Three of the resultant near-isogenic lines (NILs), each introgressed with a different QTL region, expressed an advantage in osmotic adjustment (OA) and other drought-related traits relative to their recipient parents. These NILs and the parental genotypes were field-grown under well-watered and water-limited conditions, and characterized for their metabolic and mineral compositions. Comparisons were then made between (1) GB and GH genotypes, (2) the contrasting water regimes and (3) each NIL and its recipient parent. Hierarchical clustering analysis clearly distinguished between GB and GH genotypes based on either metabolite or mineral composition. Comparisons between well-watered and water-limited conditions in each of the genotypes showed differing trends in the various solutes. The greater concentrations of potassium, magnesium and calcium under water stress, when compared with well-watered conditions, may have enhanced OA or osmoprotection. All NILs exhibited significantly modified solute composition relative to their recipient parents. In particular, increased levels of alanine, aspartic acid, citric acid, malic acid, glycerol, myoinositol, threonic acid, potassium, magnesium and calcium were found under drought conditions in one or more of the NILs relative to their recipient parents. The increased values of these solutes could contribute to the superior capacity of these NILs to cope with drought.


Asunto(s)
Sequías , Gossypium/genética , Sitios de Carácter Cuantitativo , Agua/fisiología , Aminoácidos/análisis , Cruzamiento , Carbohidratos/análisis , Análisis por Conglomerados , Cromatografía de Gases y Espectrometría de Masas , Genotipo , Gossypium/metabolismo , Minerales/análisis
16.
Funct Integr Genomics ; 10(2): 167-86, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20333536

RESUMEN

Low water availability is the major environmental factor limiting crop productivity. Transcriptome analysis was used to study terminal drought response in wild emmer wheat, Triticum dicoccoides, genotypes contrasting in their productivity and yield stability under drought stress. A total of 5,892 differentially regulated transcripts were identified between drought and well-watered control and/or between drought resistant (R) and drought susceptible (S) genotypes. Functional enrichment analyses revealed that multilevel regulatory and signalling processes were significantly enriched among the drought-induced transcripts, in particular in the R genotype. Therefore, further analyses were focused on selected 221 uniquely expressed or highly abundant transcripts in the R genotype, as potential candidates for drought resistance genes. Annotation of the 221 genes revealed that 26% of them are involved in multilevel regulation, including: transcriptional regulation, RNA binding, kinase activity and calcium and abscisic acid signalling implicated in stomatal closure. Differential expression patterns were also identified in genes known to be involved in drought adaptation pathways, such as: cell wall adjustment, cuticular wax deposition, lignification, osmoregulation, redox homeostasis, dehydration protection and drought-induced senescence. These results demonstrate the potential of wild emmer wheat as a source for candidate genes for improving drought resistance.


Asunto(s)
Adaptación Fisiológica/genética , Sequías , Regulación de la Expresión Génica de las Plantas , Transducción de Señal/genética , Triticum/genética , Ácido Abscísico/metabolismo , Senescencia Celular , Genes de Plantas/genética , Genotipo , Análisis de Secuencia por Matrices de Oligonucleótidos , Estomas de Plantas/fisiología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transcripción Genética , Triticum/citología
17.
Theor Appl Genet ; 121(3): 499-510, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20407741

RESUMEN

The gene-pool of wild emmer wheat, Triticum turgidum ssp. dicoccoides, harbors a rich allelic repertoire for disease resistance. In the current study, we made use of tetraploid wheat mapping populations derived from a cross between durum wheat (cv. Langdon) and wild emmer (accession G18-16) to identify and map a new powdery mildew resistance gene derived from wild emmer wheat. Initially, the two parental lines were screened with a collection of 42 isolates of Blumeria graminis f. sp. tritici (Bgt) from Israel and 5 isolates from Switzerland. While G18-16 was resistant to 34 isolates, Langdon was resistant only to 5 isolates and susceptible to 42 isolates. Isolate Bgt#15 was selected to differentiate between the disease reactions of the two genotypes. Segregation ratio of F(2-3) and recombinant inbreed line (F(7)) populations to inoculation with isolate Bgt#15 indicated the role of a single dominant gene in conferring resistance to Bgt#15. This gene, temporarily designated PmG16, was located on the distal region of chromosome arm 7AL. Genetic map of PmG16 region was assembled with 32 simple sequence repeat (SSR), sequence tag site (STS), Diversity array technology (DArT) and cleaved amplified polymorphic sequence (CAPS) markers and assigned to the 7AL physical bin map (7AL-16). Using four DNA markers we established colinearity between the genomic region spanning the PmG16 locus within the distal region of chromosome arm 7AL and the genomic regions on rice chromosome 6 and Brachypodium Bd1. A comparative analysis was carried out between PmG16 and other known Pm genes located on chromosome arm 7AL. The identified PmG16 may facilitate the use of wild alleles for improvement of powdery mildew resistance in elite wheat cultivars via marker-assisted selection.


Asunto(s)
Ascomicetos/genética , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Genes de Plantas/genética , Inmunidad Innata/genética , Enfermedades de las Plantas/genética , Triticum/genética , ADN de Plantas/genética , Marcadores Genéticos , Genoma de Planta , Israel , Oryza/genética , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Ploidias , Reacción en Cadena de la Polimerasa , Suiza
18.
Ann Bot ; 105(7): 1211-20, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20202969

RESUMEN

BACKGROUND AND AIMS: Micronutrient malnutrition, particularly zinc and iron deficiency, afflicts over three billion people worldwide due to low dietary intake. In the current study, wild emmer wheat (Triticum turgidum ssp. dicoccoides), the progenitor of domesticated wheat, was tested for (1) genetic diversity in grain nutrient concentrations, (2) associations among grain nutrients and their relationships with plant productivity, and (3) the association of grain nutrients with the eco-geographical origin of wild emmer accessions. METHODS: A total of 154 genotypes, including wild emmer accessions from across the Near Eastern Fertile Crescent and diverse wheat cultivars, were characterized in this 2-year field study for grain protein, micronutrient (zinc, iron, copper and manganese) and macronutrient (calcium, magnesium, potassium, phosphorus and sulphur) concentrations. KEY RESULTS: Wide genetic diversity was found among the wild emmer accessions for all grain nutrients. The concentrations of grain zinc, iron and protein in wild accessions were about two-fold greater than in the domesticated genotypes. Concentrations of these compounds were positively correlated with one another, with no clear association with plant productivity, suggesting that all three nutrients can be improved concurrently with no yield penalty. A subset of 12 populations revealed significant genetic variation between and within populations for all minerals. Association between soil characteristics at the site of collection and grain nutrient concentrations showed negative associations between soil clay content and grain protein and between soil-extractable zinc and grain zinc, the latter suggesting that the greatest potential for grain nutrient minerals lies in populations from micronutrient-deficient soils. CONCLUSIONS: Wild emmer wheat germplasm offers unique opportunities to exploit favourable alleles for grain nutrient properties that were excluded from the domesticated wheat gene pool.


Asunto(s)
Variación Genética/genética , Triticum/genética , Triticum/metabolismo , Genotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
19.
Physiol Plant ; 140(1): 10-20, 2010 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-20444192

RESUMEN

Awns are long, stiff filamentous extensions of glumes in many grasses. In wheat, awns contribute up to 40% of the grain's photosynthetic assimilates, and assist in seed dispersal. Awns accumulate silica in epidermal hairs and papillae, and silica has been positively associated with yield and environmental stress tolerance. Here, the awns of a set of domesticated wheat genotypes and their direct progenitor, Triticum turgidum ssp. dicoccoides were characterized. In addition, the silica concentration in awns was genetically dissected in a tetraploid wheat population of recombinant inbred lines (RILs) derived from a cross between durum wheat (cv. Langdon) and wild emmer (accession G18-16). Scanning electron micrographs revealed a continuous silica layer under the cuticle. Extended silicification was identified in the epidermis cell wall and in sclerenchyma cells near the vascular bundles, but not in the stomata, suggesting that an active process directs the soluble silica away from the water evaporation stream. The number of silicified cells was linearly correlated to silica concentration in dry weight (DW), suggesting cellular control over silicification. Domesticated wheat awns contained up to 19% silica per DW, as compared with 7% in the wild accessions, suggesting selection pressure associated with the domestication process. Six quantitative trait loci (QTLs) for silica were identified in the awns, with a LOD score of 3.7-6.3, three of which overlapped genomic regions that contribute to high grain protein. Localization of silica in the awns and identification of QTLs help illuminate mechanisms associated with silica metabolism in wheat.


Asunto(s)
Sitios de Carácter Cuantitativo , Dióxido de Silicio/metabolismo , Triticum/genética , Mapeo Cromosómico , Genotipo , Tallos de la Planta/metabolismo , Tallos de la Planta/ultraestructura , Triticum/metabolismo
20.
Front Plant Sci ; 11: 598483, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33363559

RESUMEN

Tef (Eragrostis tef), a staple crop that originated in the Horn of Africa, has been introduced to multiple countries over the last several decades. Crop cultivation in new geographic regions raises questions regarding the molecular basis for biotic stress responses. In this study, we aimed to classify the insect abundance on tef crop in Israel, and to elucidate its chemical and physical defense mechanisms in response to insect feeding. To discover the main pests of tef in the Mediterranean climate, we conducted an insect field survey on three selected accessions named RTC-144, RTC-405, and RTC-406, and discovered that the most abundant insect order is Hemiptera. We compared the differences in Rhopalosiphum padi (Hemiptera; Aphididae) aphid performance, preference, and feeding behavior between the three accessions. While the number of aphid progeny was lower on RTC-406 than on the other two, the aphid olfactory assay indicated that the aphids tended to be repelled from the RTC-144 accession. To highlight the variation in defense responses, we investigated the physical and chemical mechanisms. As a physical barrier, the density of non-granular trichomes was evaluated, in which a higher number of trichomes on the RTC-406 than on the other accessions was observed. This was negatively correlated with aphid performance. To determine chemical responses, the volatile and central metabolite profiles were measured upon aphid attack for 4 days. The volatile analysis exposed a rich and dynamic metabolic profile, and the central metabolism profile indicated that tef plants adjust their sugars and organic and amino acid levels. Overall, we found that the tef plants possess similar defense responses as other Poaceae family species, while the non-volatile deterrent compounds are yet to be characterized. A transcriptomic time-series analysis of a selected accession RTC-144 infested with aphids revealed a massive alteration of genes related to specialized metabolism that potentially synthesize non-volatile toxic compounds. This is the first report to reveal the variation in the defense mechanisms of tef plants. These findings can facilitate the discovery of insect-resistance genes leading to enhanced yield in tef and other cereal crops.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda