Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
PLoS Genet ; 19(12): e1011070, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38100394

RESUMEN

PhoP-PhoR, one of the 12 two-component systems (TCSs) that empower M. tuberculosis to sense and adapt to diverse environmental conditions, remains essential for virulence, and therefore, represents a major target to develop novel anti-TB therapies. Although both PhoP and PhoR have been structurally characterized, the signal(s) that this TCS responds to remains unknown. Here, we show that PhoR is a sensor of acidic pH/high salt conditions, which subsequently activate PhoP via phosphorylation. In keeping with this, transcriptomic data uncover that acidic pH- inducible expression of PhoP regulon is significantly inhibited in a PhoR-deleted M. tuberculosis. Strikingly, a set of PhoP regulon genes displayed a low pH-dependent activation even in the absence of PhoR, suggesting the presence of non-canonical mechanism(s) of PhoP activation. Using genome-wide interaction-based screening coupled with phosphorylation assays, we identify a non-canonical mechanism of PhoP phosphorylation by the sensor kinase PrrB. To investigate how level of P~PhoP is regulated, we discovered that in addition to its kinase activity PhoR functions as a phosphatase of P~PhoP. Our subsequent results identify the motif/residues responsible for kinase/phosphatase dual functioning of PhoR. Collectively, these results uncover that contrasting kinase and phosphatase functions of PhoR determine the homeostatic mechanism of regulation of intra-mycobacterial P~PhoP which controls the final output of the PhoP regulon. Together, these results connect PhoR to pH-dependent activation of PhoP with downstream functioning of the regulator. Thus, PhoR plays a central role in mycobacterial adaptation to low pH conditions within the host macrophage phagosome, and a PhoR-deleted M. tuberculosis remains significantly attenuated in macrophages and animal models.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Animales , Mycobacterium tuberculosis/genética , Virulencia/genética , Fosforilación , Tuberculosis/genética , Monoéster Fosfórico Hidrolasas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica
2.
Molecules ; 29(1)2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38202646

RESUMEN

Vetiver root is widely used to produce essential oils in the aromatherapy industry. After the extraction of oil, the roots are disposed of as waste. The central objective of this research was to explore the conversion of this waste into a resource using a circular economy framework. To generate biochar, vetiver roots were pyrolyzed at different temperatures (300, 500, and 700 °C) and residence times (30, 60, and 120 min). Analysis showed the root biochar generated at 500 °C and held for 60 min had the highest surface area of 308.15 m2/g and a yield of 53.76%, in addition to other favorable characteristics. Comparatively, the surface area and the yield of shoot biochar were significantly lower compared to those of the roots. Repurposing the spent root biomass for environmental and agronomic benefits, our circular economy concept prevents the plant tissue from entering landfills or the waste stream.


Asunto(s)
Agricultura , Aromaterapia , Carbón Orgánico , Biomasa , Industrias
3.
Environ Monit Assess ; 195(9): 1099, 2023 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-37632560

RESUMEN

Mitigating the atmospheric greenhouse effect while enhancing the inherent soil quality and productive capacity is possible through soil carbon (C) sequestration, which has a significant potential to counteract the adverse effects of agroecosystem level C emission through natural and anthropogenic means. Although rice is the most important food in India, feeding more than 60% of the country's population, it is commonly blamed for significant methane (CH4) emissions that accelerate climate change. Higher initial soil organic matter concentrations would create more CH4 under the flooded soil conditions, as reducible soil C is a prerequisite for CH4 generation. In India, rice is generally cultivated in lowlands under continuous flooding. Less extensive organic matter breakdown in lowland rice agroecosystems often significantly impacts the dynamics of soil active and passive C pools. Change from conventional to conservation agriculture might trap a significant quantity of SOC. The study aims to investigate the potential of rice-based soils to sequester C and reduce the accelerated greenhouse effects through modified farming practices, such as crop residue retention, crop rotation, organic farming, varietal selection, conservation agriculture, integrated nutrient management, and water management. Overall, lowland rice agroecosystems can sequester significant amounts of SOC, but this potential must be balanced against the potential for CH4 emissions. Management practices that reduce CH4 emissions while increasing soil C sequestration should be promoted and adopted to maximize the sustainability of rice agroecosystems. This review is important for understanding the effectiveness of the balance between SOC sequestration and CH4 emissions in lowland rice agroecosystems for adopting sustainable agricultural practices in the context of climate change.


Asunto(s)
Oryza , Suelo , Carbono , Secuestro de Carbono , Monitoreo del Ambiente , Metano
4.
J Bacteriol ; 204(6): e0011022, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35608366

RESUMEN

Mycobacterium tuberculosis encounters numerous stress conditions within the host, but how it is able to mount a coupled stress response remains unknown. Growing evidence suggests that under acidic pH, M. tuberculosis modulates redox homeostasis. In an attempt to dissect the mechanistic details of responses to multiple stress conditions, here we studied the significance of connectivity of extracytoplasmic sigma factors with PhoP. We show that PhoP impacts the mycothiol redox state, and the H37Rv ΔphoP deletion mutant strain displays a significantly higher susceptibility to redox stress than the wild-type bacilli. To probe how the two regulators PhoP and redox-active sigma factor SigH contribute to redox homeostasis, we show that SigH controls expression of redox-active thioredoxin genes, a major mycobacterial antioxidant system, and under redox stress, SigH, but not PhoP, is recruited at the target promoters. Consistent with these results, interaction between PhoP and SigH fails to impact redox-dependent gene expression. This is in striking contrast to our previous results showing PhoP-dependent SigE recruitment within acid-inducible mycobacterial promoters to maintain pH homeostasis. Our subsequent results demonstrate reduced PhoP-SigH interaction in the presence of diamide and enhanced PhoP-SigE interaction under low pH. These contrasting results uncover the underlying mechanism of the mycobacterial adaptive program, coupling low pH with maintenance of redox homeostasis. IMPORTANCE M. tuberculosis encounters reductive stress under acidic pH. To investigate the mechanism of coupled stress response, we show that PhoP plays a major role in mycobacterial redox stress response. We observed a strong correlation of phoP-dependent redox-active expression of thioredoxin genes, a major mycobacterial antioxidant system. Further probing of functioning of regulators revealed that while PhoP controls pH homeostasis via its interaction with SigE, direct recruitment of SigH, but not PhoP-SigH interaction, controls expression of thioredoxin genes. These strikingly contrasting results showing enhanced PhoP-SigE interaction under acidic pH and reduced PhoP-SigH interaction under redox conditions uncover the underlying novel mechanism of the mycobacterial adaptive program, coupling low pH with maintenance of redox homeostasis.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Antioxidantes/metabolismo , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Humanos , Mycobacterium tuberculosis/metabolismo , Factor sigma/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Transcripción Genética
5.
Chem Eng J ; 441: 135936, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35345777

RESUMEN

The global data on the temporal tracking of the COVID-19 through wastewater surveillance needs to be comparatively evaluated to generate a proper and precise understanding of the robustness, advantages, and sensitivity of the wastewater-based epidemiological (WBE) approach. We reviewed the current state of knowledge based on several scientific articles pertaining to temporal variations in COVID-19 cases captured via viral RNA predictions in wastewater. This paper primarily focuses on analyzing the WBE-based temporal variation reported globally to check if the reported early warning lead-time generated through environmental surveillance is pragmatic or latent. We have compiled the geographical variations reported as lead time in various WBE reports to strike a precise correlation between COVID-19 cases and genome copies detected through wastewater surveillance, with respect to the sampling dates, separately for WASH and non-WASH countries. We highlighted sampling methods, climatic and weather conditions that significantly affected the concentration of viral SARS-CoV-2 RNA detected in wastewater, and thus the lead time reported from the various climatic zones with diverse WASH situations were different. Our major findings are: i) WBE reports around the world are not comparable, especially in terms of gene copies detected, lag-time gained between monitored RNA peak and outbreak/peak of reported case, as well as per capita RNA concentrations; ii) Varying sanitation facility and climatic conditions that impact virus degradation rate are two major interfering features limiting the comparability of WBE results, and iii) WBE is better applicable to WASH countries having well-connected sewerage system.

6.
Molecules ; 27(21)2022 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-36363996

RESUMEN

Phosphorus and heavy metals are washed off and transported with stormwater runoff to nearby surface water bodies resulting in environmental and human health risks. Catch basins remain one of the primary gateways through which stormwater runoff and pollutants from urban areas are transported. Retrofitting catch basins to enhance their phosphorus and heavy metal removal can be an effective approach. In this study, aluminum-based water treatment residual (WTR, a non-hazardous byproduct of the water treatment process) was granulated via a green method to serve as a sustainable filter material, called WTR granules, for enhancing the capabilities of catch basins to remove phosphorus and heavy metals. The WTR granules were field tested in a parking lot in Hoboken, New Jersey. Twelve storm events were monitored. The results showed that the WTR granules significantly (p < 0.05) reduced dissolved P, Cu, and Zn, as well as total P, Cu, Pb, and Zn concentrations in stormwater runoff without signs of disintegration. No flooding or water ponding was observed during the implementation. Results suggest the WTR granules are an inexpensive, green filter material that can be used for retrofitting catch basins to remove phosphorus and heavy metals effectively.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Humanos , Fósforo , Residuos Industriales , Contaminantes Químicos del Agua/análisis , Lluvia , Metales Pesados/análisis
7.
Molecules ; 27(21)2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36364028

RESUMEN

Over the past several decades, the value of drinking water treatment residuals (WTRs), a byproduct of the coagulation process during water purification, has been recognized in various environmental applications, including sustainable remediation of phosphorus (P)-enriched soils. Aluminum-based WTRs (Al-WTRs) are suitable adsorbent materials for P, which can be obtained and processed inexpensively. However, given their heterogeneous nature, it is essential to identify an easily analyzable chemical property that can predict the capability of Al-WTRs to bind P before soil amendment. To address this issue, thirteen Al-WTRs were collected from various geographical locations around the United States. The non-hazardous nature of the Al-WTRs was ascertained first. Then, their P adsorption capacities were determined, and the chemical properties likely to influence their adsorption capacities were examined. Statistical models were built to identify a single property to best predict the P adsorption capacity of the Al-WTRs. Results show that all investigated Al-WTRs are safe for environmental applications, and oxalate-extractable aluminum is a significant indicator of the P adsorption capacity of Al-WTRs (p-value = 0.0002, R2 = 0.7). This study is the first to report a simple chemical test that can be easily applied to predict the efficacy of Al-WTRs in binding P before their broadscale land application.


Asunto(s)
Agua Potable , Purificación del Agua , Estados Unidos , Fósforo/química , Aluminio/química , Adsorción , Purificación del Agua/métodos , Suelo
8.
Physiol Plant ; 173(3): 829-842, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34109636

RESUMEN

Acid mine drainage (AMD) is an acidic and metalliferous discharge that imposes oxidative stress on living things through bioaccumulation and physical exposure. The abandoned Tab-Simco mining site of Southern Illinois generates highly acidic AMD with elevated sulfate (SO4 2- ) and various metals. Vetiver grass (Chrysopogon zizanioides) is effective for the remediation of Tab-Simco AMD at both mesocosm and microcosm levels over extended periods. In this study, we conducted a proteomic investigation of vetiver shoots under short and long-term exposure to AMD. Our objective was to decipher the physiological responses of vetiver to the combined abiotic stresses of AMD (metal and low pH). Differential regulation was observed for longer-term (56 days) exposure to AMD, which resulted in 17 upregulated and nine downregulated proteins, whereas shorter-term (7 days) exposure led to 14 upregulated and 14 downregulated proteins. There were significant changes to photosynthesis, including upregulation of electron transport chain proteins for light-dependent reactions after 56 days, whereas differential regulation of enzymes relating to C4 carbon fixation was observed after 7 days. Significant changes in amino acid and nitrogen metabolism, including upregulation of ethylene and flavonoid biosynthesis, along with plant response to nitrogen starvation, were observed. Short-term changes also included upregulation of glutathione reductase and methionine sulfoxide reductase, whereas longer-term changes included changes in protein misfolding and ER-associated protein degradation for stress management and acclimation.


Asunto(s)
Chrysopogon , Ácidos , Biodegradación Ambiental , Minería , Proteómica
9.
Int J Biometeorol ; 65(2): 205-222, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33034718

RESUMEN

The present study aims to examine the changes in air quality during different phases of the COVID-19 pandemic, including the lockdown (LD1-4) and unlock period (UL1-2) (post-lockdown) as compared to pre-lockdown (PL1-3) and to establish the relationships of the environmental and demographic variables with COVID-19 cases in the state of Maharashtra, the worst-hit state in India. Atmospheric pollutants such as PM2.5, PM10, NOx, and CO were substantially reduced during the lockdown and unlock phases with the greatest reduction in cities having larger traffic volumes. Compared with the immediate pre-lockdown period (PL3), the averaged PM2.5 and PM10 reduced by up to 51% and 47% respectively during the lockdown periods, which resulted in 'satisfactory' level of air quality index (AQI) as a result of reduced vehicular traffic and industrial closing. These parameters continued to reduce as much as 80% during the unlock periods due to the additive impact of weather (rainfall and temperature) combined with the lockdown conditions. Kendall's correlation matrix showed a significant negative correlation between temperature and air pollutants (r= - 0.35 to - 057). Conversely, SO2 and O3 did not improve, and in some cases, they increased during the lockdown and unlocking. COVID-19 spreading incidences were strongly and positively correlated with temperature (r < 0.62) and dew point (r < 0.73). Thus, this indicates that the increase in temperature and dew point cannot weaken the transmission of this virus. The number of COVID-19 cases relative to air pollutants was negatively correlated (r = - 0.33 to - 0.74), which may be a mere coincidence as a result of lockdown. However, based on pre-lockdown air quality data and demographic factors, it was found that particulate matter (PM2.5 and PM10) and population density are closely linked with higher morbidity and mortality although a more in-depth research is required in this direction to validate this finding. The onset of COVID-19 has allowed us to determine that 'immediate' changes in air quality within densely populated/industrialized areas can improve livelihood based on pollution mitigation. These findings could be used by policymakers to set new benchmarks for air pollution that would improve the quality of life for major sectors of the World's population. COVID-19 has shown us that we can make changes when necessary, and findings may pave the way for future research to inform policy on the tough choices we will have to make between quality of life and survival. Also, our results will enrich the ongoing discussion on the role of environmental factors on the transmission of COVID-19 and will help to take necessary steps for its control.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , COVID-19 , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Ciudades , Control de Enfermedades Transmisibles , Monitoreo del Ambiente , Humanos , India , Pandemias , Material Particulado/análisis , Calidad de Vida , SARS-CoV-2
10.
J Bacteriol ; 202(7)2020 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-31932312

RESUMEN

Mycobacterium tuberculosis retains the ability to establish an asymptomatic latent infection. A fundamental question in mycobacterial physiology is to understand the mechanisms involved in hypoxic stress, a critical player in persistence. Here, we show that the virulence regulator PhoP responds to hypoxia, the dormancy signal, and effectively integrates hypoxia with nitrogen metabolism. We also provide evidence to demonstrate that both under nitrogen limiting conditions and during hypoxia, phoP locus controls key genes involved in nitrogen metabolism. Consistently, under hypoxia a ΔphoP strain shows growth attenuation even with surplus nitrogen, the alternate electron acceptor, and complementation of the mutant restores bacterial growth. Together, our observations provide new biological insights into the role of PhoP in integrating nitrogen metabolism with hypoxia by the assistance of the hypoxia regulator DosR. The results have significant implications on the mechanism of intracellular survival and growth of the tubercle bacilli under a hypoxic environment within the phagosome.IMPORTANCEM. tuberculosis retains the unique ability to establish an asymptomatic latent infection. To understand the mechanisms involved in hypoxic stress which play a critical role in persistence, we show that the virulence regulator PhoP is linked to hypoxia, the dormancy signal. In keeping with this, phoP was shown to play a major role in M. tuberculosis growth under hypoxia even in the presence of surplus nitrogen, the alternate electron acceptor. Our results showing regulation of hypoxia-responsive genes provide new biological insights into role of the virulence regulator in metabolic switching by sensing hypoxia and integrating nitrogen metabolism with hypoxia by the assistance of the hypoxia regulator DosR.


Asunto(s)
Proteínas Bacterianas/genética , Metabolismo Energético , Hipoxia , Mycobacterium tuberculosis/fisiología , Factores de Virulencia/genética , Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación Bacteriana de la Expresión Génica , Modelos Biológicos , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/patogenicidad , Nitrógeno/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Elementos de Respuesta , Virulencia/genética , Factores de Virulencia/metabolismo
11.
Int J Phytoremediation ; 22(7): 764-773, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31941351

RESUMEN

Persistence of antibiotics in soil and aquatic ecosystem is the primary reason for the emergence of antimicrobial resistant microorganisms. After consumption, antibiotics are poorly retained in our body, and a major fraction is excreted out. These bioactive compounds end up in wastewater. The routine treatment practiced by the conventional wastewater treatment plants does not remove the entire load of antibiotics. Cost-effective and environment-friendly treatment technologies need to be developed to address this issue. Vetiver system is being adapted throughout the world due to its removal capacity and high tolerance toward several toxic organic and inorganic pollutants. In this study, we investigated the potential of vetiver (Chrysopogon zizanioides), a fast-growing, perennial grass capable of growing in a hydroponic setup, to remove two widely prescribed antibiotics, ciprofloxacin (CIP) and tetracycline (TTC) from secondary wastewater effluent. Significant (p < 0.05) removal of antibiotics and nutrients (N & P) by vetiver grass from secondary wastewater effluent was observed within 30 days. Vetiver grass removed more than 90% antibiotics from secondary wastewater matrix. In addition to antibiotics, vetiver grass also removed nitrate (>40%), phosphate (>60%), total organic carbon (>50%), and chemical oxygen demand (>40%) from secondary wastewater effluent.


Asunto(s)
Chrysopogon , Contaminantes del Suelo , Antibacterianos , Biodegradación Ambiental , Ecosistema , Nutrientes , Aguas Residuales
12.
Molecules ; 26(1)2020 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-33375266

RESUMEN

The use of insensitive munitions such as 3-nitro-1,2,4-triazol-5-one (NTO) is rapidly increasing and is expected to replace conventional munitions in the near future. Various NTO treatment technologies are being developed for the treatment of wastewater from industrial munition facilities. This is the first study to explore the potential phytoremediation of industrial NTO-wastewater using vetiver grass (Chrysopogon zizanioides L.). Here, we present evidence that vetiver can effectively remove NTO from wastewater, and also translocated NTO from root to shoot. NTO was phytotoxic and resulted in a loss of plant biomass and chlorophyll. The metabolomic analysis showed significant differences between treated and control samples, with the upregulation of specific pathways such as glycerophosphate metabolism and amino acid metabolism, providing a glimpse into the stress alleviation strategy of vetiver. One of the mechanisms of NTO stress reduction was the excretion of solid crystals. Scanning electron microscopy (SEM), electrospray ionization mass spectrometry (ESI-MS), and Fourier-transform infrared spectroscopy (FTIR) analysis confirmed the presence of NTO crystals in the plant exudates. Further characterization of the exudates is in progress to ascertain the purity of these crystals, and if vetiver could be used for phytomining NTO from industrial wastewater.


Asunto(s)
Chrysopogon/metabolismo , Residuos Industriales/análisis , Nitrocompuestos/metabolismo , Triazoles/metabolismo , Aguas Residuales/química , Biodegradación Ambiental , Metabolómica , Nitratos/metabolismo , Exudados de Plantas/análisis , Espectrometría de Masa por Ionización de Electrospray , Espectroscopía Infrarroja por Transformada de Fourier
13.
J Bacteriol ; 201(12)2019 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-30962357

RESUMEN

A hallmark feature of Mycobacterium tuberculosis pathogenesis lies in the ability of the pathogen to survive within macrophages under a stressful environment. Thus, coordinated regulation of stress proteins is critically important for an effective adaptive response of M. tuberculosis, the failure of which results in elevated immune recognition of the tubercle bacilli with reduced survival during chronic infections. Here, we show that virulence regulator PhoP impacts the global regulation of heat shock proteins, which protect M. tuberculosis against stress generated by macrophages during infection. Our results identify that in addition to classical DNA-protein interactions, newly discovered protein-protein interactions control complex mechanisms of expression of heat shock proteins, an essential pathogenic determinant of M. tuberculosis While the C-terminal domain of PhoP binds to its target promoters, the N-terminal domain of the regulator interacts with the C-terminal end of the heat shock repressors. Remarkably, our findings delineate a regulatory pathway which involves three major transcription factors, PhoP, HspR, and HrcA, that control in vivo recruitment of the regulators within the target genes and regulate stress-specific expression of heat shock proteins via protein-protein interactions. The results have implications on the mechanism of regulation of PhoP-dependent stress response in M. tuberculosisIMPORTANCE The regulation of heat shock proteins which protect M. tuberculosis against stress generated by macrophages during infection is poorly understood. In this study, we show that PhoP, a virulence regulator of the tubercle bacilli, controls heat shock-responsive genes, an essential pathogenic determinant of M. tuberculosis Our results unravel that in addition to classical DNA-protein interactions, complex mechanisms of regulation of heat shock-responsive genes occur through multiple protein-protein interactions. Together, these findings delineate a fundamental regulatory pathway where transcription factors PhoP, HspR, and HrcA interact with each other to control stress-specific expression of heat shock proteins.


Asunto(s)
Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Proteínas de Choque Térmico/genética , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidad , Humanos , Macrófagos/microbiología , Regiones Promotoras Genéticas , Proteínas Represoras/genética , Factores de Transcripción/genética , Virulencia
14.
Environ Manage ; 63(1): 148-158, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30276442

RESUMEN

One of the biggest environmental impacts of mining is the generation of acid mine drainage (AMD). In the absence of proper post-mining management practices, AMD pollution can cause massive environmental damage. Current AMD management practices often fail to meet the expectations of cost, efficiency, and sustainability. The objective of this study was to utilize the metal-binding and acid-neutralizing capacity of an industrial by-product that is otherwise landfilled, namely drinking-water treatment residuals (WTRs), to treat AMD-water, thus offering a green remediation alternative. AMD-water was collected from Tab-Simco coal mine in Carbondale, Illinois. It was highly acidic (pH 2.27), and contaminated with metals, metalloids and sulfate at very high concentrations. A filter media, prepared using locally-generated aluminum (Al) and calcium (Ca)-based WTRs, was used to increase pH and to remove metals and [Formula: see text] from AMD-water. Laboratory-batch sorption studies at various WTRs (Al and Ca):AMD-water ratios were performed to optimize the filter media. WTRs:sand ratio of 1:6 provided optimal permeability, and 1:1 Al-WTRs:Ca-WTRs ratio was the optimal sorbent mix for removal of the metals of concern. A scaled-up study using a 55-gallon WTRs and sand-based filter was designed and tested. The results showed that the filter media removed more than 99% of the initial Fe (137 mg/L), Al (80 mg/L), Zn (11 mg/L), Pb (7 mg/L), As (4 mg/L), Mn (33 mg/L), and 44% of the initial [Formula: see text] (2481 mg/L) from Tab-Simco AMD-water. pH increased from 2.27 to 7.8. Desorption experiments showed that the metals were irreversibly bound to the WTRs and were not released back to the water.


Asunto(s)
Contaminantes Químicos del Agua , Agua , Concentración de Iones de Hidrógeno , Illinois , Metales , Minería
15.
Mol Microbiol ; 104(3): 400-411, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28142206

RESUMEN

The ability to sense acid stress and mount an appropriate adaptive response by Mycobacterium tuberculosis, which adapts a long-term residence in the macrophage phagosome, remains one of the critical features that defines mycobacterial physiology and its intracellular location. To understand the mechanistic basis of adaptation of the intracellular pathogen, we studied global regulation of M. tuberculosis gene expression in response to acid stress. Although recent studies indicate a role for the virulence-associated phoP locus in pH-driven adaptation, in this study, we discovered a strikingly novel regulatory mechanism, which controls acid-stress homeostasis. Using mycobacterial protein fragment complementation and in vitro interaction analyses, we demonstrate that PhoP interacts with acid-inducible extracytoplasmic SigE (one of the 13 M. tuberculosis sigma factors) to regulate a complex transcriptional program. Based on these results, we propose a model to suggest that PhoP-SigE interaction represents a major requirement for the global acid stress response, absence of which leads to strongly reduced survival of the bacilli under acidic pH conditions. These results account for the significant growth attenuation of the phoP mutant in both cellular and animal models, and unravel the underlying global mechanism of how PhoP induces an adaptive program in response to acid stress.


Asunto(s)
Proteínas Bacterianas/genética , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidad , Factor sigma/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Concentración de Iones de Hidrógeno , Mycobacterium tuberculosis/metabolismo , Ácido Oléico/farmacología , Factor sigma/metabolismo , Estrés Fisiológico/genética
16.
J Biol Chem ; 291(36): 19018-30, 2016 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-27445330

RESUMEN

Attenuation of Mycobacterium bovis BCG strain is related to the loss of the RD1-encoded ESX-1 secretion system. The ESX-1 system secretes virulence factor ESAT-6 that plays a critical role in modulation of the host immune system, which is essential for establishment of a productive infection. Previous studies suggest that among the reasons for attenuation of Mycobacterium tuberculosis H37Ra is a mutation in the phoP gene that interferes with the ESX-1 secretion system and inhibits secretion of ESAT-6. Here, we identify a totally different and distinct regulatory mechanism involving PhoP and transcription regulator EspR on transcriptional control of the espACD operon, which is required for ESX-1-dependent ESAT-6 secretion. Although both of these regulators are capable of influencing espACD expression, we show that activation of espACD requires direct recruitment of both PhoP and EspR at the espACD promoter. The most fundamental insights are derived from the inhibition of EspR binding at the espACD regulatory region of the phoP mutant strain because of PhoP-EspR protein-protein interactions. Based on these results, a model is proposed suggesting how PhoP and EspR protein-protein interactions contribute to activation of espACD expression and, in turn, control ESAT-6 secretion, an essential pathogenic determinant of M. tuberculosis Together, these results have significant implications on the mechanism of virulence regulation of M. tuberculosis.


Asunto(s)
Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Mycobacterium tuberculosis/metabolismo , Factores de Transcripción/metabolismo , Factores de Virulencia/biosíntesis , Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , Sistemas de Secreción Bacterianos/genética , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidad , Operón/fisiología , Elementos de Respuesta/fisiología , Factores de Transcripción/genética , Factores de Virulencia/genética
17.
Environ Sci Technol ; 50(5): 2530-7, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26843403

RESUMEN

Lead (Pb) is a major urban pollutant, due to deteriorating lead-based paint in houses built before 1978. Phytoremediation is an inexpensive and effective technique for remediation of Pb-contaminated homes. Vetiver (Chrysopogon zizanioides), a noninvasive, fast-growing grass with high biomass, can tolerate and accumulate large quantities of Pb in its tissues. Lead is known to induce phytochelatins and antioxidative enzymes in vetiver; however, the overall impact of Pb stress on metabolic pathways of vetiver is unknown. In the current study, vetiver plants were treated with different concentrations of Pb in a hydroponic setup. Metabolites were extracted and analyzed using LC/MS/MS. Multivariate analysis of metabolites in both root and shoot tissue showed tremendous induction in key metabolic pathways including sugar metabolism, amino acid metabolism, and an increase in production of osmoprotectants, such as betaine and polyols, and metal-chelating organic acids. The data obtained provide a comprehensive insight into the overall stress response mechanisms in vetiver.


Asunto(s)
Chrysopogon/efectos de los fármacos , Chrysopogon/metabolismo , Plomo/toxicidad , Biodegradación Ambiental , Cromatografía Liquida , Hidroponía/métodos , Inactivación Metabólica , Plomo/farmacocinética , Redes y Vías Metabólicas , Metabolómica/métodos , Fitoquelatinas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/metabolismo , Espectrometría de Masas en Tándem/métodos
18.
Water Environ Res ; 88(6): 500-9, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27010486

RESUMEN

Bench scale tests were performed to evaluate two recycled wastes, water treatment residuals (WTR) and scrap tire rubber (STR), for adsorption of selected metals from urban stormwater, and assess their release from used sorbents. Aluminum-WTR alone could rapidly and effectively remove Cu, Pb, and Zn, while STR alone continuously released Zn accompanied with Cu and Pb adsorption. Zn leaching from STR was significantly reduced in the presence of WTR. Very little metals released from used combined adsorbents in NaNO3 solution, and only part of them were extracted with EDTA (a strong chelating agent), suggesting that metal release is not a concern in a typical stormwater condition. A combination of WTR and STR is a new, effective method for mitigation of urban stormwater metals-WTR can inhibit the STR leaching, and STR improves the hydraulic permeability of WTR powders, a limiting factor for stormwater flow when WTR is used alone.


Asunto(s)
Tecnología Química Verde/métodos , Metales/química , Goma/química , Residuos Sólidos/análisis , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Adsorción
19.
Environ Monit Assess ; 188(3): 176, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26894907

RESUMEN

Several million metric tons of mining wastes, called stamp sands, were generated in the Upper Peninsula of Michigan during extensive copper (Cu) mining activities in the past. These materials, containing large amounts of Cu, were discharged into various offshoots of Lake Superior. Due to evidences of Cu toxicity on aquatic organisms, in due course, the materials were dredged and dumped on lake shores, thus converting these areas into vast, fallow lands. Erosion of these Cu-contaminated stamp sands back to the lakes is severely affecting aquatic life. A lack of uniform vegetation cover on stamp sands is facilitating this erosion. Understanding the fact that unless the stamp sands are fertilized to the point of sustaining vegetation growth, the problem with erosion and water quality degradation will continue, amending the stamp sands with locally available biosolids and composts, was considered. The purpose of the reported study was to assess potential effects of such organic fertilizer amendments on soil quality. As the first step of a combined laboratory and greenhouse study, a 2-month-long incubation experiment was performed to investigate the effects of biosolids and compost addition on the soil nutrient profile of stamp sands and organic matter content. Results showed that both biosolids and compost amendments resulted in significant increase in nitrogen and phosphorus concentrations and organic matter contents of stamp sands. Sequential extraction data demonstrated that Cu was mostly present as bound forms in stamp sands, and there was no significant increase in the plant available fraction of Cu because of fertilizer application.


Asunto(s)
Cobre/análisis , Monitoreo del Ambiente , Minería , Contaminantes del Suelo/análisis , Suelo/química , Eliminación de Residuos Líquidos/métodos , Agricultura , Fertilizantes , Michigan , Nitrógeno , Fósforo/química
20.
Proteins ; 83(10): 1813-22, 2015 10.
Artículo en Inglés | MEDLINE | ID: mdl-26214268

RESUMEN

Although unglycosylated HuEpo is fully functional, it has very short serum half-life. However, the mechanism of in vivo clearance of human Epo (HuEpo) remains largely unknown. In this study, the relative importance of protease-sensitive sites of recombinant HuEpo (rHuEpo) has been investigated by analysis of structural data coupled with in vivo half-life measurements. Our results identify α3-α4 inter-helical loop region as a target site of lysosomal protease Cathepsin L. Consistent with previously-reported lysosomal degradation of HuEpo, these results for the first time identify cleavage sites of rHuEpo by specific lysosomal proteases. Furthermore, in agreement with the lowered exposure of the peptide backbone around the cleavage site, remarkably substitutions of residues with bulkier amino acids result in significantly improved in vivo stability. Together, these results have implications for the mechanism of in vivo clearance of the protein in humans.


Asunto(s)
Eritropoyetina/química , Proteínas Recombinantes/química , Secuencia de Aminoácidos , Catepsina L/metabolismo , Línea Celular Tumoral , Eritropoyetina/metabolismo , Humanos , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Estabilidad Proteica , Estructura Secundaria de Proteína , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda