Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
J Biol Chem ; 300(1): 105566, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38103643

RESUMEN

Macrophages play critical roles in inflammation and tissue homeostasis, and their functions are regulated by various autocrine, paracrine, and endocrine factors. We have previously shown that CTRP6, a secreted protein of the C1q family, targets both adipocytes and macrophages to promote obesity-linked inflammation. However, the gene programs and signaling pathways directly regulated by CTRP6 in macrophages remain unknown. Here, we combine transcriptomic and phosphoproteomic analyses to show that CTRP6 activates inflammatory gene programs and signaling pathways in mouse bone marrow-derived macrophages (BMDMs). Treatment of BMDMs with CTRP6 upregulated proinflammatory, and suppressed the antiinflammatory, gene expression. We also showed that CTRP6 activates p44/42-MAPK, p38-MAPK, and NF-κB signaling pathways to promote inflammatory cytokine secretion from BMDMs, and that pharmacologic inhibition of these signaling pathways markedly attenuated the effects of CTRP6. Pretreatment of BMDMs with CTRP6 also sensitized and potentiated the BMDMs response to lipopolysaccharide (LPS)-induced inflammatory signaling and cytokine secretion. Consistent with the metabolic phenotype of proinflammatory macrophages, CTRP6 treatment induced a shift toward aerobic glycolysis and lactate production, reduced oxidative metabolism, and elevated mitochondrial reactive oxygen species production in BMDMs. Importantly, in accordance with our in vitro findings, BMDMs from CTRP6-deficient mice were less inflammatory at baseline and showed a marked suppression of LPS-induced inflammatory gene expression and cytokine secretion. Finally, loss of CTRP6 in mice also dampened LPS-induced inflammation and hypothermia. Collectively, our findings suggest that CTRP6 regulates and primes the macrophage response to inflammatory stimuli and thus may have a role in modulating tissue inflammatory tone in different physiological and disease contexts.


Asunto(s)
Adipoquinas , Perfilación de la Expresión Génica , Inflamación , Lipopolisacáridos , Macrófagos , Fosfoproteínas , Proteómica , Animales , Ratones , Adipoquinas/deficiencia , Adipoquinas/genética , Adipoquinas/metabolismo , Células de la Médula Ósea/citología , Citocinas/metabolismo , Glucólisis , Hipotermia/complicaciones , Inflamación/complicaciones , Inflamación/genética , Inflamación/inmunología , Inflamación/metabolismo , Ácido Láctico/biosíntesis , Lipopolisacáridos/inmunología , Macrófagos/citología , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , FN-kappa B/metabolismo , Fosfoproteínas/análisis , Fosfoproteínas/metabolismo , Transducción de Señal , Especies Reactivas de Oxígeno/metabolismo
2.
FASEB J ; 36(6): e22347, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35579659

RESUMEN

C1q/TNF-related proteins (CTRP1-15) constitute a conserved group of secreted proteins of the C1q family with diverse functions. In vitro studies have shown that CTRP11/C1QL4 can inhibit adipogenesis, antagonize myoblast fusion, and promote testosterone synthesis and secretion. Whether CTRP11 is required for these processes in vivo remains unknown. Here, we show that knockout (KO) mice lacking CTRP11 have normal skeletal muscle mass and function, and testosterone level, suggesting that CTRP11 is dispensable for skeletal muscle development and testosterone production. We focused our analysis on whether this nutrient-responsive secreted protein plays a role in controlling sugar and fat metabolism. At baseline when mice are fed a standard chow, CTRP11 deficiency affects metabolic parameters in a sexually dimorphic manner. Only Ctrp11-KO female mice have significantly higher fasting serum ketones and reduced physical activity. In the refeeding phase following food withdrawal, Ctrp11-KO female mice have reduced food intake and increased metabolic rate and energy expenditure, highlighting CTRP11's role in fasting-refeeding response. When challenged with a high-fat diet to induce obesity and metabolic dysfunction, CTRP11 deficiency modestly exacerbates obesity-induced glucose intolerance, with more pronounced effects seen in Ctrp11-KO male mice. Switching to a low-fat diet after obesity induction results in greater fat loss in wild type relative to KO male mice, suggesting impaired response to obesity reversal and reduced metabolic flexibility in the absence of CTRP11. Collectively, our data provide genetic evidence for novel sex-dependent metabolic regulation by CTRP11, but note the overall modest contribution of CTRP11 to systemic energy homeostasis.


Asunto(s)
Complemento C1/metabolismo , Complemento C1q , Dieta Alta en Grasa , Animales , Complemento C1q/metabolismo , Metabolismo Energético/genética , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/metabolismo , Testosterona
3.
Am J Physiol Endocrinol Metab ; 322(6): E480-E493, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35403439

RESUMEN

Secreted proteins of the C1q/TNF-related protein (CTRP) family play diverse functions in different organ systems. In the brain, CTRP14/C1QL1 is required for the proper establishment and maintenance of synapses between climbing fibers and cerebellar Purkinje cells. Beyond the central nervous system, the function of CTRP14 is largely unknown. A recent genome-wide association study has implicated CTRP14/C1QL1 as a candidate gene associated with total body fat mass. Here, we explored the potential metabolic roles of CTRP14. We show that Ctrp14 expression in peripheral tissues is dynamically regulated by fasting-refeeding and high-fat feeding. In the chow-fed basal state, Ctrp14 deletion modestly reduces glucose tolerance in knockout (KO) male mice and affects physical activity in a sex- and nutritional state-dependent manner. In the ad libitum fed state, Ctrp14 KO male mice have lower physical activity. In contrast, female KO mice have increased physical activity in the fasted and refed states. In response to an obesogenic diet, CTRP14-deficient mice of either sex gained similar weight and are indistinguishable from wild-type littermates in body composition, lipid profiles, and insulin sensitivity. Ambulatory activity, however, is reduced in Ctrp14 KO male mice. Food intake is also reduced in Ctrp14 KO male mice in the refed period following food deprivation. Meal pattern analyses indicate that decreased caloric intake from fasting to refeeding is due, in part, to smaller meal size. We conclude that CTRP14 is largely dispensable for metabolic homeostasis, but highlight context-dependent and sexually dimorphic metabolic responses of Ctrp14 deletion affecting physical activity and ingestive behaviors.NEW & NOTEWORTHY CTRP14 is a secreted protein whose function in the peripheral tissues is largely unknown. We show that the expression of Ctrp14 in peripheral tissues is regulated by metabolic and nutritional state. We generated mice lacking CTRP14 and show that CTRP14 deficiency alters physical activity and food intake in response to fasting and refeeding. Our data has provided new and valuable information on the physiological function of CTRP14.


Asunto(s)
Ayuno , Resistencia a la Insulina , Animales , Complemento C1q/genética , Dieta Alta en Grasa , Ingestión de Alimentos/genética , Femenino , Estudio de Asociación del Genoma Completo , Resistencia a la Insulina/genética , Masculino , Ratones , Ratones Noqueados
4.
FASEB J ; 35(11): e21910, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34610176

RESUMEN

C1q/TNF-related protein (CTRP) family comprises fifteen highly conserved secretory proteins with diverse central and peripheral functions. In zebrafish, mouse, and human, CTRP4 is most highly expressed in the brain. We previously showed that CTRP4 is a metabolically responsive regulator of food intake and energy balance, and mice lacking CTRP4 exhibit sexually dimorphic changes in ingestive behaviors and systemic metabolism. Recent single-cell RNA sequencing also revealed Ctrp4/C1qtnf4 expression in diverse neuronal cell types across distinct anatomical brain regions, hinting at additional roles in the central nervous system not previously characterized. To uncover additional central functions of CTRP4, we subjected Ctrp4 knockout (KO) mice to a battery of behavioral tests. Relative to wild-type (WT) littermates, loss of CTRP4 does not alter exploratory, anxiety-, or depressive-like behaviors, motor function and balance, sensorimotor gating, novel object recognition, and spatial memory. While pain-sensing mechanisms in response to thermal stress and mild shock are intact, both male and female Ctrp4 KO mice have increased sensitivity to pain induced by higher-level shock, suggesting altered nociceptive function. Importantly, CTRP4 deficiency impairs hippocampal-dependent associative learning and memory as assessed by trace fear conditioning paradigm. This deficit is sex-dependent, affects only female mice, and is associated with altered expression of learning and memory genes (Arc, c-fos, and Pde4d) in the hippocampus and cortex. Altogether, our behavioral and gene expression analyses have uncovered novel aspects of the CTRP4 function and provided a physiological context to further investigate its mechanism of action in the central and peripheral nervous system.


Asunto(s)
Adipoquinas/genética , Expresión Génica , Técnicas de Inactivación de Genes/métodos , Aprendizaje por Laberinto , Memoria Espacial , Adipoquinas/metabolismo , Animales , Ansiedad/genética , Conducta Animal , Corteza Cerebelosa/metabolismo , Femenino , Hipocampo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Prueba de Desempeño de Rotación con Aceleración Constante
5.
FASEB J ; 35(6): e21655, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34042218

RESUMEN

Tendon inflammation has been implicated in both adaptive connective tissue remodeling and overuse-induced tendinopathy. Lipid mediators control both the initiation and resolution of inflammation, but their roles within tendon are largely unknown. Here, we profiled local shifts in intratendinous lipid mediators via liquid chromatography-tandem mass spectrometry in response to synergist ablation-induced plantaris tendon overuse. Sixty-four individual lipid mediators were detected in homogenates of plantaris tendons from ambulatory control rats. This included many bioactive metabolites of the cyclooxygenase (COX), lipoxygenase (LOX), and epoxygenase (CYP) pathways. Synergist ablation induced a robust inflammatory response at day 3 post-surgery characterized by epitenon infiltration of polymorphonuclear leukocytes and monocytes/macrophages (MΦ), heightened expression of inflammation-related genes, and increased intratendinous concentrations of the pro-inflammatory eicosanoids thromboxane B2 and prostaglandin E2 . By day 7, MΦ became the predominant myeloid cell type in tendon and there were further delayed increases in other COX metabolites including prostaglandins D2 , F2α , and I2 . Specialized pro-resolving mediators including protectin D1, resolvin D2 and D6, as well as related pathway markers of D-resolvins (17-hydroxy-docosahexaenoic acid), E-resolvins (18-hydroxy-eicosapentaenoic acid), and lipoxins (15-hydroxy-eicosatetraenoic acid) were also increased locally in response to tendon overuse, as were anti-inflammatory fatty acid epoxides of the CYP pathway (eg, epoxy-eicosatrienoic acids). Nevertheless, intratendinous prostaglandins remained markedly increased even following 28 days of tendon overuse together with a lingering MΦ presence. These data reveal a delayed and prolonged local inflammatory response to tendon overuse characterized by an overwhelming predominance of pro-inflammatory eicosanoids and a relative lack of specialized pro-resolving lipid mediators.


Asunto(s)
Tendón Calcáneo/patología , Mediadores de Inflamación/metabolismo , Inflamación/patología , Lípidos/análisis , Metaboloma , Traumatismos de los Tendones/patología , Tendón Calcáneo/lesiones , Tendón Calcáneo/metabolismo , Animales , Inflamación/etiología , Inflamación/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley , Traumatismos de los Tendones/etiología , Traumatismos de los Tendones/metabolismo
6.
Am J Physiol Endocrinol Metab ; 320(6): E1044-E1052, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33900848

RESUMEN

Obesity and type 2 diabetes are rapidly increasing in the adolescent population. We sought to determine whether adipokines, specifically leptin, C1q/TNF-related proteins 1 (CTRP1) and CTRP9, and the hepatokine fibroblast growth factor 21 (FGF21), are associated with obesity and hyperglycemia in a cohort of lean and obese adolescents, across the spectrum of glycemia. In an observational, longitudinal study of lean and obese adolescents, we measured fasting laboratory tests, oral glucose tolerance tests, and adipokines including leptin, CTRP1, CTRP9, and FGF21. Participants completed baseline and 2-year follow-up study visits and were categorized as lean (LC, lean control; n = 30), obese normoglycemic (ONG; n = 61), and obese hyperglycemic (OHG; n = 31) adolescents at baseline and lean (n = 8), ONG (n = 18), and OHG (n = 4) at follow-up. Groups were compared using ANOVA and regression analysis, and linear mixed effects modeling was used to test for differences in adipokine levels across baseline and follow-up visits. Results showed that at baseline, leptin was higher in all obese groups (P < 0.001) compared with LC. FGF21 was higher in OHG participants compared with LC (P < 0.001) and ONG (P < 0.001) and positively associated with fasting glucose (P < 0.001), fasting insulin (P < 0.001), Homeostasis Model Assessment-Insulin Resistance Index (HOMA-IR; P < 0.001), and hemoglobin A1c (HbA1c; P = 0.01). CTRP1 was higher in OHG compared with ONG (P = 0.03). CTRP9 was not associated with obesity or hyperglycemia in this pediatric cohort. At 2 years, leptin decreased in ONG (P = 0.003) and FGF21 increased in OHG (P = 0.02), relative to lean controls. Altered adipokine levels are associated with the inflammatory milieu in obese youth with and without hyperglycemia. In adolescence, the novel adipokine CTRP1 was elevated with hyperglycemia, whereas CTRP9 was unchanged in this cohort.NEW & NOTEWORTHY Leptin is higher in obese adolescents and FGF21 is higher in obese hyperglycemic adolescents. The novel adipokine CTRP1 is higher in obese hyperglycemic adolescents, whereas CTRP9 was unchanged in this adolescent cohort.


Asunto(s)
Adipoquinas/sangre , Glucemia/metabolismo , Obesidad Infantil/sangre , Adipoquinas/análisis , Adolescente , Glucemia/fisiología , Niño , Estudios Transversales , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/complicaciones , Femenino , Estudios de Seguimiento , Intolerancia a la Glucosa/sangre , Intolerancia a la Glucosa/complicaciones , Prueba de Tolerancia a la Glucosa , Hemoglobina Glucada/análisis , Hemoglobina Glucada/metabolismo , Humanos , Resistencia a la Insulina/fisiología , Estudios Longitudinales , Masculino , Obesidad Infantil/complicaciones , Estado Prediabético/sangre , Estado Prediabético/complicaciones
7.
Am J Physiol Endocrinol Metab ; 321(5): E702-E713, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34632797

RESUMEN

In chronic obesity, activated adipose tissue proinflammatory cascades are tightly linked to metabolic dysfunction. Yet, close temporal analyses of the responses to obesogenic environment such as high-fat feeding (HFF) in susceptible mouse strains question the causal relationship between inflammation and metabolic dysfunction, and/or raises the possibility that certain inflammatory cascades play adaptive/homeostatic, rather than pathogenic roles. Here, we hypothesized that CTRP6, a C1QTNF family member, may constitute an early responder to acute nutritional changes in adipose tissue, with potential physiological roles. Both 3-days high-fat feeding (3dHFF) and acute obesity reversal [2-wk switch to low-fat diet after 8-wk HFF (8wHFF)] already induced marked changes in whole body fuel utilization. Although adipose tissue expression of classical proinflammatory cytokines (Tnf-α, Ccl2, and Il1b) exhibited no, or only minor, change, C1qtnf6 uniquely increased, and decreased, in response to 3dHFF and acute obesity reversal, respectively. CTRP6 knockout (KO) mouse embryonic fibroblasts (MEFs) exhibited increased adipogenic gene expression (Pparg, Fabp4, and Adipoq) and markedly reduced inflammatory genes (Tnf-α, Ccl2, and Il6) compared with wild-type MEFs, and recombinant CTRP6 induced the opposite gene expression signature, as assessed by RNA sequencing. Consistently, 3dHFF of CTRP6-KO mice induced a greater whole body and adipose tissue weight gain compared with wild-type littermates. Collectively, we propose CTRP6 as a gene that rapidly responds to acute changes in caloric intake, acting in acute overnutrition to induce a "physiological inflammatory response" that limits adipose tissue expansion.NEW & NOTEWORTHY CTRP6 (C1qTNF6), a member of adiponectin gene family, regulates inflammation and metabolism in established obesity. Here, short-term high-fat feeding in mice is shown to increase adipose tissue expression of CTRP6 before changes in the expression of classical inflammatory genes occur. Conversely, CTRP6 expression in adipose tissue decreases early in the course of obesity reversal. Gain- and loss-of-function models suggest CTRP6 as a positive regulator of inflammatory cascades, and a negative regulator of adipogenesis and adipose tissue expansion.


Asunto(s)
Adipoquinas/fisiología , Tejido Adiposo/patología , Inflamación/genética , Fenómenos Fisiológicos de la Nutrición/genética , Adipogénesis/genética , Adipoquinas/genética , Tejido Adiposo/metabolismo , Animales , Células Cultivadas , Dieta Alta en Grasa , Embrión de Mamíferos , Femenino , Células HEK293 , Humanos , Inflamación/metabolismo , Inflamación/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Tamaño de los Órganos/genética , Hipernutrición/genética , Hipernutrición/metabolismo , Hipernutrición/patología , Embarazo
8.
Biochem Biophys Res Commun ; 538: 92-96, 2021 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-33168188

RESUMEN

Obesity is a major risk factor for SARS-CoV-2 infection and COVID-19 severity. The underlying basis of this association is likely complex in nature. The host-cell receptor angiotensin converting enzyme 2 (ACE2) and the type II transmembrane serine protease (TMPRSS2) are important for viral cell entry. It is unclear whether obesity alters expression of Ace2 and Tmprss2 in the lower respiratory tract. Here, we show that: 1) Ace2 expression is elevated in the lung and trachea of diet-induced obese male mice and reduced in the esophagus of obese female mice relative to lean controls; 2) Tmprss2 expression is increased in the trachea of obese male mice but reduced in the lung and elevated in the trachea of obese female mice relative to lean controls; 3) in chow-fed lean mice, females have higher expression of Ace2 in the lung and esophagus as well as higher Tmprss2 expression in the lung but lower expression in the trachea compared to males; and 4) in diet-induced obese mice, males have higher expression of Ace2 in the trachea and higher expression of Tmprss2 in the lung compared to females, whereas females have higher expression of Tmprss2 in the trachea relative to males. Our data indicate diet- and sex-dependent modulation of Ace2 and Tmprss2 expression in the lower respiratory tract and esophagus. Given the high prevalence of obesity worldwide and a sex-biased mortality rate, we discuss the implications and relevance of our results for COVID-19.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/enzimología , Esófago/enzimología , Pulmón/enzimología , Obesidad/enzimología , SARS-CoV-2/fisiología , Serina Endopeptidasas/metabolismo , Tráquea/enzimología , Internalización del Virus , Animales , COVID-19/virología , Dieta , Esófago/virología , Femenino , Pulmón/virología , Masculino , Ratones , Obesidad/virología , Factores Sexuales , Tráquea/virología
9.
Am J Physiol Regul Integr Comp Physiol ; 320(1): R19-R35, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33085906

RESUMEN

C1q/TNF-related protein 1 (CTRP1) is an endocrine factor with metabolic, cardiovascular, and renal functions. We previously showed that aged Ctrp1-knockout (KO) mice fed a control low-fat diet develop renal hypertrophy and dysfunction. Since aging and obesity adversely affect various organ systems, we hypothesized that aging, in combination with obesity induced by chronic high-fat feeding, would further exacerbate renal dysfunction in CTRP1-deficient animals. To test this, we fed wild-type and Ctrp1-KO mice a high-fat diet for 8 mo or longer. Contrary to our expectation, no differences were observed in blood pressure, heart function, or vascular stiffness between genotypes. Loss of CTRP1, however, resulted in an approximately twofold renal enlargement (relative to body weight), ∼60% increase in urinary total protein content, and elevated pH, and changes in renal gene expression affecting metabolism, signaling, transcription, cell adhesion, solute and metabolite transport, and inflammation. Assessment of glomerular integrity, the extent of podocyte foot process effacement, as well as renal response to water restriction and salt loading did not reveal significant differences between genotypes. Interestingly, blood platelet, white blood cell, neutrophil, lymphocyte, and eosinophil counts were significantly elevated, whereas mean corpuscular volume and hemoglobin were reduced in Ctrp1-KO mice. Cytokine profiling revealed increased circulating levels of CCL17 and TIMP-1 in KO mice. Compared with our previous study, current data suggest that chronic high-fat feeding affects renal phenotypes differently than similarly aged mice fed a control low-fat diet, highlighting a diet-dependent contribution of CTRP1 deficiency to age-related changes in renal structure and function.


Asunto(s)
Adipoquinas/deficiencia , Envejecimiento/metabolismo , Dieta Alta en Grasa/efectos adversos , Enfermedades Renales/etiología , Riñón/metabolismo , Obesidad/etiología , Adipoquinas/genética , Factores de Edad , Envejecimiento/genética , Envejecimiento/patología , Animales , Quimiocina CCL17/sangre , Femenino , Regulación de la Expresión Génica , Genotipo , Hipertrofia , Riñón/ultraestructura , Enfermedades Renales/genética , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Inhibidor Tisular de Metaloproteinasa-1/sangre
10.
J Anat ; 238(6): 1284-1295, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33438210

RESUMEN

Networks linking single genes to multiple phenotypic outcomes can be founded on local anatomical interactions as well as on systemic factors like biochemical products. Here we explore the effects of such interactions by investigating the competing spatial demands of brain and masticatory muscle growth within the hypermuscular myostatin-deficient mouse model and in computational simulations. Mice that lacked both copies of the myostatin gene (-/-) and display gross hypermuscularity, and control mice that had both copies of the myostatin gene (+/+) were sampled at 1, 7, 14 and 28 postnatal days. A total of 48 mice were imaged with standard as well as contrast-enhanced microCT. Size metrics and landmark configurations were collected from the image data and were analysed alongside in silico models of tissue expansion. Findings revealed that: masseter muscle volume was smaller in -/- mice at day 1 but became, and remained thereafter, larger by 7 days; -/- endocranial volumes begin and remained smaller; -/- enlargement of the masticatory muscles was associated with caudolateral displacement of the calvarium, lateral displacement of the zygomatic arches, and slight dorsal deflection of the face and basicranium. Simulations revealed basicranial retroflexion (flattening) and dorsal deflection of the face associated with muscle expansion and abrogative covariations of basicranial flexion and ventral facial deflection associated with endocranial expansion. Our findings support the spatial-packing theory and highlight the importance of understanding the harmony of competing spatial demands that can shape and maintain mammalian skull architecture during ontogeny.


Asunto(s)
Cara/anatomía & histología , Músculos Masticadores/anatomía & histología , Cráneo/anatomía & histología , Animales , Cefalometría , Simulación por Computador , Ratones , Miostatina/genética
11.
Connect Tissue Res ; 62(1): 24-39, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32664808

RESUMEN

PURPOSE/AIM: Duchenne muscular dystrophy (DMD) is a progressive neuromuscular disease characterized by extensive muscle weakness. Patients with DMD lack a functional dystrophin protein, which transmits force and organizes the cytoskeleton of skeletal muscle. Multiomic studies have been proposed as a way to obtain novel insight about disease processes from preclinical models, and we used this approach to study pathological changes in dystrophic muscles. MATERIALS AND METHODS: We evaluated hindlimb muscles of male mdx/mTR mice, which lack a functional dystrophin protein and have deficits in satellite cell abundance and proliferative capacity. Wild type (WT) C57BL/6 J mice served as controls. Muscle fiber contractility was measured, along with changes in the transcriptome using RNA sequencing, and in the proteome, metabolome, and lipidome using mass spectrometry. RESULTS: While mdx/mTR mice displayed gross pathological changes and continued cycles of degeneration and regeneration, we found no differences in permeabilized fiber contractility between strains. However, there were numerous changes in the transcriptome and proteome related to protein balance, contractile elements, extracellular matrix, and metabolism. There was only a 53% agreement in fold-change data between the proteome and transcriptome. Numerous changes in markers of skeletal muscle metabolism were observed, with dystrophic muscles exhibiting elevated glycolytic metabolites such as 6-phosphoglycerate, fructose-6-phosphate and glucose-6-phosphate, fructose bisphosphate, phosphorylated hexoses, and phosphoenolpyruvate. CONCLUSIONS: These findings highlight the utility of multiomics in studying muscle disease, and provide additional insight into the pathological changes in dystrophic muscles that might help to indirectly guide evidence-based nutritional or exercise prescription in DMD patients.


Asunto(s)
Distrofia Muscular de Duchenne , 5-Metiltetrahidrofolato-Homocisteína S-Metiltransferasa , Animales , Modelos Animales de Enfermedad , Distrofina , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Músculo Esquelético , Distrofia Muscular de Duchenne/genética , Proteoma
12.
Am J Physiol Endocrinol Metab ; 319(6): E1084-E1100, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33017221

RESUMEN

Central and peripheral mechanisms are both required for proper control of energy homeostasis. Among circulating plasma proteins, C1q/TNF-related proteins (CTRPs) have recently emerged as important regulators of sugar and fat metabolism. CTRP4, expressed in brain and adipose tissue, is unique among the family members in having two tandem globular C1q domains. We previously showed that central administration of recombinant CTRP4 suppresses food intake, suggesting a central nervous system role in regulating ingestive physiology. Whether this effect is pharmacological or physiological remains unclear. We used a loss-of-function knockout (KO) mouse model to clarify the physiological role of CTRP4. Under basal conditions, CTRP4 deficiency increased serum cholesterol levels and impaired glucose tolerance in male but not female mice fed a control low-fat diet. When challenged with a high-fat diet, male and female KO mice responded differently to weight gain and had different food intake patterns. On an obesogenic diet, male KO mice had similar weight gain as wild-type littermates. When fed ad libitum, KO male mice had greater meal number, shorter intermeal interval, and reduced satiety ratio. Female KO mice, in contrast, had lower body weight and adiposity. In the refeeding period following food deprivation, female KO mice had significantly higher food intake due to longer meal duration and reduced satiety ratio. Collectively, our data provide genetic evidence for a sex-dependent physiological role of CTRP4 in modulating food intake patterns and systemic energy metabolism.


Asunto(s)
Adipoquinas/genética , Adipoquinas/fisiología , Adiposidad/genética , Ingestión de Alimentos/genética , Adipoquinas/farmacología , Animales , Recuento de Células Sanguíneas , Colesterol/sangre , Dieta con Restricción de Grasas , Dieta Alta en Grasa , Femenino , Intolerancia a la Glucosa/genética , Intolerancia a la Glucosa/metabolismo , Masculino , Ratones , Ratones Noqueados , Ratones Obesos , Obesidad/metabolismo , Respuesta de Saciedad , Caracteres Sexuales , Aumento de Peso/genética
13.
Am J Physiol Endocrinol Metab ; 319(1): E146-E162, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32421370

RESUMEN

Secreted hormones facilitate tissue cross talk to maintain energy balance. We previously described C1q/TNF-related protein 12 (CTRP12) as a novel metabolic hormone. Gain-of-function and partial-deficiency mouse models have highlighted important roles for this fat-derived adipokine in modulating systemic metabolism. Whether CTRP12 is essential and required for metabolic homeostasis is unknown. We show here that homozygous deletion of Ctrp12 gene results in sexually dimorphic phenotypes. Under basal conditions, complete loss of CTRP12 had little impact on male mice, whereas it decreased body weight (driven by reduced lean mass and liver weight) and improved insulin sensitivity in female mice. When challenged with a high-fat diet, Ctrp12 knockout (KO) male mice had decreased energy expenditure, increased weight gain and adiposity, elevated serum TNFα level, and reduced insulin sensitivity. In contrast, female KO mice had reduced weight gain and liver weight. The expression of lipid synthesis and catabolism genes, as well as profibrotic, endoplasmic reticulum stress, and oxidative stress genes were largely unaffected in the adipose tissue of Ctrp12 KO male mice. Despite greater adiposity and insulin resistance, Ctrp12 KO male mice fed an obesogenic diet had lower circulating triglyceride and free fatty acid levels. In contrast, lipid profiles of the leaner female KO mice were not different from those of WT controls. These data suggest that CTRP12 contributes to whole body energy metabolism in genotype-, diet-, and sex-dependent manners, underscoring complex gene-environment interactions influencing metabolic outcomes.


Asunto(s)
Adipoquinas/genética , Peso Corporal/genética , Dieta Alta en Grasa , Metabolismo Energético/genética , Resistencia a la Insulina/genética , Tejido Adiposo/metabolismo , Adiposidad/genética , Animales , Estrés del Retículo Endoplásmico/genética , Ácidos Grasos no Esterificados/metabolismo , Femenino , Fibrosis/genética , Expresión Génica , Interacción Gen-Ambiente , Metabolismo de los Lípidos/genética , Hígado/patología , Masculino , Ratones , Ratones Noqueados , Tamaño de los Órganos , Estrés Oxidativo/genética , Factores Sexuales , Triglicéridos/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Aumento de Peso/genética
14.
FASEB J ; 33(7): 8666-8687, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31002535

RESUMEN

We recently described myonectin (also known as erythroferrone) as a novel skeletal muscle-derived myokine with metabolic functions. Here, we use a genetic mouse model to determine myonectin's requirement for metabolic homeostasis. Female myonectin-deficient mice had larger gonadal fat pads and developed mild insulin resistance when fed a high-fat diet (HFD) and had reduced food intake during refeeding after an unfed period but were otherwise indistinguishable from wild-type littermates. Male mice lacking myonectin, however, had reduced physical activity when fed ad libitum and in the postprandial state but not during the unfed period. When stressed with an HFD, myonectin-knockout male mice had significantly elevated VLDL-triglyceride (TG) and strikingly impaired lipid clearance from circulation following an oral lipid load. Fat distribution between adipose and liver was also altered in myonectin-deficient male mice fed an HFD. Greater fat storage resulted in significantly enlarged adipocytes and was associated with increased postprandial lipoprotein lipase activity in adipose tissue. Parallel to this was a striking reduction in liver steatosis due to significantly reduced TG accumulation. Liver metabolite profiling revealed additional significant changes in bile acids and 1-carbon metabolism pathways. Combined, our data affirm the physiologic importance of myonectin in regulating local and systemic lipid metabolism.-Little, H. C., Rodriguez, S., Lei, X., Tan, S. Y., Stewart, A. N., Sahagun, A., Sarver, D. C., Wong, G. W. Myonectin deletion promotes adipose fat storage and reduces liver steatosis.


Asunto(s)
Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Citocinas/genética , Hígado Graso/genética , Hígado Graso/metabolismo , Metabolismo de los Lípidos/genética , Hígado/metabolismo , Proteínas Musculares/genética , Adipocitos/metabolismo , Adipocitos/patología , Adiposidad/genética , Animales , Citocinas/metabolismo , Dieta Alta en Grasa , Hígado Graso/patología , Femenino , Homeostasis/genética , Insulina/genética , Insulina/metabolismo , Resistencia a la Insulina/genética , Lipoproteínas VLDL/genética , Lipoproteínas VLDL/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Obesidad/genética , Obesidad/metabolismo , Obesidad/patología , Triglicéridos/genética , Triglicéridos/metabolismo
15.
FASEB J ; 33(12): 14748-14759, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31689374

RESUMEN

Interorgan communication mediated by secreted proteins plays a pivotal role in metabolic homeostasis, yet the function of many circulating secretory proteins remains unknown. Here, we describe the function of protease-associated domain-containing 1 (PRADC1), an enigmatic secretory protein widely expressed in humans and mice. In metabolically active tissues (liver, muscle, fat, heart, and kidney), we showed that Pradc1 expression is significantly suppressed by refeeding and reduced in kidney and brown fat in the context of obesity. PRADC1 is dispensable for whole-body metabolism when mice are fed a low-fat diet. However, in obesity induced by high-fat feeding, PRADC1-deficient female mice have reduced weight gain and adiposity despite similar caloric intake. Decreased fat mass is attributed, in part, to increased metabolic rate, physical activity, and energy expenditure in these animals. Reduced adiposity in PRADC1-deficient mice, however, does not improve systemic glucose and lipid metabolism, insulin sensitivity, liver steatosis, or adipose inflammation. Thus, in PRADC1-deficient animals, decreased fat mass and enhanced physical activity are insufficient to confer a healthy metabolic phenotype in the context of an obesogenic diet. Our results shed light on the physiologic function of PRADC1 and the complex regulation of metabolic health.-Rodriguez, S., Stewart, A. N., Lei, X., Cao, X., Little, H. C., Fong, V., Sarver, D. C., Wong, G. W. PRADC1: a novel metabolic-responsive secretory protein that modulates physical activity and adiposity.


Asunto(s)
Adiposidad , Péptidos y Proteínas de Señalización Intercelular/fisiología , Metabolismo de los Lípidos , Movimiento , Tejido Adiposo/metabolismo , Animales , Femenino , Glucosa/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Riñón/metabolismo , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Miocardio/metabolismo
16.
FASEB J ; 33(11): 12680-12695, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31536390

RESUMEN

Tenocytes serve to synthesize and maintain collagen fibrils and other extracellular matrix proteins in tendon. Despite the high prevalence of tendon injury, the underlying biologic mechanisms of postnatal tendon growth and repair are not well understood. IGF1 plays an important role in the growth and remodeling of numerous tissues but less is known about IGF1 in tendon. We hypothesized that IGF1 signaling is required for proper tendon growth in response to mechanical loading through regulation of collagen synthesis and cell proliferation. To test this hypothesis, we conditionally deleted the IGF1 receptor (IGF1R) in scleraxis (Scx)-expressing tenocytes using a tamoxifen-inducible Cre-recombinase system and caused tendon growth in adult mice via mechanical overload of the plantaris tendon. Compared with control Scx-expressing IGF1R-positive (Scx:IGF1R+) mice, in which IGF1R is present in tenocytes, mice that lacked IGF1R in their tenocytes [Scx-expressing IGF1R-negative (Scx:IGF1RΔ) mice] demonstrated reduced cell proliferation and smaller tendons in response to mechanical loading. Additionally, we identified that both the PI3K/protein kinase B and ERK pathways are activated downstream of IGF1 and interact in a coordinated manner to regulate cell proliferation and protein synthesis. These studies indicate that IGF1 signaling is required for proper postnatal tendon growth and support the potential use of IGF1 in the treatment of tendon disorders.-Disser, N. P., Sugg, K. B., Talarek, J. R., Sarver, D. C., Rourke, B. J., Mendias, C. L. Insulin-like growth factor 1 signaling in tenocytes is required for adult tendon growth.


Asunto(s)
Factor I del Crecimiento Similar a la Insulina/metabolismo , Transducción de Señal , Tendones/crecimiento & desarrollo , Tenocitos/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/biosíntesis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factor I del Crecimiento Similar a la Insulina/genética , Ratones , Ratones Transgénicos , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo
17.
J Exp Biol ; 223(Pt 20)2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-32895327

RESUMEN

Hummingbirds, subsisting almost exclusively on nectar sugar, face extreme challenges to blood sugar regulation. The capacity for transmembrane sugar transport is mediated by the activity of facilitative glucose transporters (GLUTs) and their localisation to the plasma membrane (PM). In this study, we determined the relative protein abundance of GLUT1, GLUT2, GLUT3 and GLUT5 via immunoblot using custom-designed antibodies in whole-tissue homogenates and PM fractions of flight muscle, heart and liver of ruby-throated hummingbirds (Archilochus colubris). The GLUTs examined were detected in nearly all tissues tested. Hepatic GLUT1 was minimally present in whole-tissue homogenates and absent win PM fractions. GLUT5 was expressed in flight muscles at levels comparable to those of the liver, consistent with the hypothesised uniquely high fructose uptake and oxidation capacity of hummingbird flight muscles. To assess GLUT regulation, we fed ruby-throated hummingbirds 1 mol l-1 sucrose ad libitum for 24 h followed by either 1 h of fasting or continued feeding until sampling. We measured relative GLUT abundance and concentration of circulating sugars. Blood fructose concentration in fasted hummingbirds declined (∼5 mmol l-1 to ∼0.18 mmol l-1), while fructose-transporting GLUT2 and GLUT5 abundance did not change in PM fractions. Blood glucose concentrations remained elevated in fed and fasted hummingbirds (∼30 mmol l-1), while glucose-transporting GLUT1 and GLUT3 in flight muscle and liver PM fractions, respectively, declined in fasted birds. Our results suggest that glucose uptake capacity is dynamically reduced in response to fasting, allowing for maintenance of elevated blood glucose levels, while fructose uptake capacity remains constitutively elevated promoting depletion of blood total fructose within the first hour of a fast.


Asunto(s)
Aves , Proteínas Facilitadoras del Transporte de la Glucosa , Animales , Transporte Biológico , Aves/metabolismo , Fructosa , Glucosa , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Néctar de las Plantas
18.
Am J Physiol Renal Physiol ; 317(1): F172-F186, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31042061

RESUMEN

The kidney uses specialized G protein-coupled receptors, including olfactory receptors (ORs), to act as sensors of molecules and metabolites. In the present study, we cloned and studied seven renal ORs, which we previously found to be expressed in the murine renal cortex. As most ORs are orphan receptors, our goal was to identify ligands for these ORs in the hope that this will guide future research into their functional roles. We identified novel ligands for two ORs: Olfr558 and Olfr90. For Olfr558, we confirmed activation by previously reported ligands and identified 16 additional carboxylic acids that activated this OR. The strongest activation of Olfr558 was produced by butyric, cyclobutanecarboxylic, isovaleric, 2-methylvaleric, 3-methylvaleric, 4-methylvaleric, and valeric acids. The primary in vivo source of both butyric and isovaleric acids is gut microbial metabolism. We also identified 14 novel ligands that activated Olfr90, the strongest of which were 2-methyl-4-propyl-1,3-oxathiane, 1-octen-3-ol, 2-octanol, and 3-octanol. Interestingly, 8 of these 14 ligands are of fungal origin. We also investigated the tissue distribution of these receptors and found that they are each found in a subset of "nonsensory" tissues. Finally, we examined the putative human orthologs of Olfr558 and Olfr90 and found that the human ortholog of Olfr558 (OR51E1) has a similar ligand profile, indicating that the role of this OR is likely evolutionarily conserved. In summary, we examined seven novel renal ORs and identified new ligands for Olfr558 and Olfr90, which imply that both of these receptors serve to detect metabolites produced by microorganisms.


Asunto(s)
Corteza Renal/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Odorantes/metabolismo , Animales , Ácidos Carboxílicos/metabolismo , Ácidos Carboxílicos/farmacología , Microbioma Gastrointestinal , Humanos , Corteza Renal/efectos de los fármacos , Ligandos , Ratones Endogámicos C57BL , Transporte de Proteínas , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/genética , Receptores Odorantes/agonistas , Receptores Odorantes/genética , Transducción de Señal , Distribución Tisular
19.
Eur J Vasc Endovasc Surg ; 58(2): 249-256, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31202581

RESUMEN

OBJECTIVES: In this study, the aim was to investigate the potential for single muscle fibre contractility (SMFC) testing to detect the extent of reperfusion injury following various reperfusion periods. The hypothesis was that force generated by muscle fibres will correlate inversely with the extent of reperfusion injury. METHODS: Twenty-four Lewis rats were distributed among five groups. Group 1 served as normal muscle control. In all other groups, femoral artery flow was occluded for four hours. Muscle biopsies were obtained at 0 hour, six hours, day two, and day seven after reperfusion in Groups 2, 3, 4, and 5, respectively. Samples then underwent ultrastructural analysis (H&E stain) and SMFC testing. RESULTS: The maximum isometric force (mN) generated on Days two and seven after reperfusion decreased from baseline by 21% (p < 0.05), and 53% (p < .001), respectively. The specific force (kPa) followed a similar pattern with a 13% decrease at Day two (p > 0.05) and 31% decrease at Day 7 (p < .001). These results correlated inversely with the extent of quantitative injury on histology. CONCLUSIONS: The study demonstrated an inverse relationship between single muscle fibre contractility testing and neutrophil infiltration during the reperfusion phase. Further clinical studies are needed to evaluate its potential in providing prognostic information for patient outcomes.


Asunto(s)
Arteria Femoral/fisiopatología , Contracción Muscular , Fibras Musculares Esqueléticas/patología , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/fisiopatología , Daño por Reperfusión/fisiopatología , Animales , Biopsia , Constricción , Modelos Animales de Enfermedad , Femenino , Miembro Posterior , Fuerza Muscular , Músculo Esquelético/patología , Infiltración Neutrófila , Valor Predictivo de las Pruebas , Ratas Endogámicas Lew , Flujo Sanguíneo Regional , Daño por Reperfusión/patología
20.
Am J Physiol Cell Physiol ; 314(4): C389-C403, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29341790

RESUMEN

Platelet-derived growth factor receptor (PDGFR) signaling plays an important role in the fundamental biological activities of many cells that compose musculoskeletal tissues. However, little is known about the role of PDGFR signaling during tendon growth and remodeling in adult animals. Using the hindlimb synergist ablation model of tendon growth, our objectives were to determine the role of PDGFR signaling in the adaptation of tendons subjected to a mechanical growth stimulus, as well as to investigate the biological mechanisms behind this response. We demonstrate that both PDGFRs, PDGFRα and PDGFRß, are expressed in tendon fibroblasts and that the inhibition of PDGFR signaling suppresses the normal growth of tendon tissue in response to mechanical growth cues due to defects in fibroblast proliferation and migration. We also identify membrane type-1 matrix metalloproteinase (MT1-MMP) as an essential proteinase for the migration of tendon fibroblasts through their extracellular matrix. Furthermore, we report that MT1-MMP translation is regulated by phosphoinositide 3-kinase/Akt signaling, while ERK1/2 controls posttranslational trafficking of MT1-MMP to the plasma membrane of tendon fibroblasts. Taken together, these findings demonstrate that PDGFR signaling is necessary for postnatal tendon growth and remodeling and that MT1-MMP is a critical mediator of tendon fibroblast migration and a potential target for the treatment of tendon injuries and diseases.


Asunto(s)
Fibroblastos/enzimología , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Transducción de Señal , Traumatismos de los Tendones/enzimología , Tendones/enzimología , Tendones/crecimiento & desarrollo , Animales , Becaplermina/farmacología , Bencimidazoles/farmacología , Movimiento Celular , Proliferación Celular , Modelos Animales de Enfermedad , Matriz Extracelular/enzimología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/patología , Masculino , Metaloproteinasa 14 de la Matriz/genética , Metaloproteinasa 14 de la Matriz/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Fosfatidilinositol 3-Quinasa/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Quinolinas/farmacología , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/antagonistas & inhibidores , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Traumatismos de los Tendones/genética , Traumatismos de los Tendones/patología , Tendones/efectos de los fármacos , Tendones/patología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda