Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nat Methods ; 16(2): 205, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30602782

RESUMEN

The version of Supplementary Table 1 originally published online with this article contained incorrect localization annotations for one plate. This error has been corrected in the online Supplementary Information.

2.
PLoS Biol ; 17(3): e3000182, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30925180

RESUMEN

In experimental evolution, scientists evolve organisms in the lab, typically by challenging them to new environmental conditions. How best to evolve a desired trait? Should the challenge be applied abruptly, gradually, periodically, sporadically? Should one apply chemical mutagenesis, and do strains with high innate mutation rate evolve faster? What are ideal population sizes of evolving populations? There are endless strategies, beyond those that can be exposed by individual labs. We therefore arranged a community challenge, Evolthon, in which students and scientists from different labs were asked to evolve Escherichia coli or Saccharomyces cerevisiae for an abiotic stress-low temperature. About 30 participants from around the world explored diverse environmental and genetic regimes of evolution. After a period of evolution in each lab, all strains of each species were competed with one another. In yeast, the most successful strategies were those that used mating, underscoring the importance of sex in evolution. In bacteria, the fittest strain used a strategy based on exploration of different mutation rates. Different strategies displayed variable levels of performance and stability across additional challenges and conditions. This study therefore uncovers principles of effective experimental evolutionary regimens and might prove useful also for biotechnological developments of new strains and for understanding natural strategies in evolutionary arms races between species. Evolthon constitutes a model for community-based scientific exploration that encourages creativity and cooperation.


Asunto(s)
Evolución Biológica , Escherichia coli/metabolismo , Humanos , Modelos Genéticos , Mutación/genética , Saccharomyces cerevisiae/metabolismo , Temperatura
3.
Nat Methods ; 15(8): 598-600, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29988096

RESUMEN

Here we describe a C-SWAT library for high-throughput tagging of Saccharomyces cerevisiae open reading frames (ORFs). In 5,661 strains, we inserted an acceptor module after each ORF that can be efficiently replaced with tags or regulatory elements. We validated the library with targeted sequencing and tagged the proteome with bright fluorescent proteins to quantify the effect of heterologous transcription terminators on protein expression and to localize previously undetected proteins.


Asunto(s)
Genoma Fúngico , Biblioteca Genómica , Saccharomyces cerevisiae/genética , ADN de Hongos/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Sistemas de Lectura Abierta , Proteoma/genética , Proteómica , Proteínas de Saccharomyces cerevisiae/genética , Análisis de Secuencia de ADN , Lugares Marcados de Secuencia
4.
Nat Methods ; 15(8): 617-622, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29988094

RESUMEN

Yeast libraries revolutionized the systematic study of cell biology. To extensively increase the number of such libraries, we used our previously devised SWAp-Tag (SWAT) approach to construct a genome-wide library of ~5,500 strains carrying the SWAT NOP1promoter-GFP module at the N terminus of proteins. In addition, we created six diverse libraries that restored the native regulation, created an overexpression library with a Cherry tag, or enabled protein complementation assays from two fragments of an enzyme or fluorophore. We developed methods utilizing these SWAT collections to systematically characterize the yeast proteome for protein abundance, localization, topology, and interactions.


Asunto(s)
Genoma Fúngico , Biblioteca Genómica , Proteoma/genética , Saccharomyces cerevisiae/genética , Prueba de Complementación Genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas , Mapeo de Interacción de Proteínas , Proteoma/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Ribonucleoproteínas Nucleolares Pequeñas/genética , Ribonucleoproteínas Nucleolares Pequeñas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Lugares Marcados de Secuencia
5.
Nucleic Acids Res ; 47(D1): D1245-D1249, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30357397

RESUMEN

The ability to measure the abundance and visualize the localization of proteins across the yeast proteome has stimulated hypotheses on gene function and fueled discoveries. While the classic C' tagged GFP yeast library has been the only resource for over a decade, the recent development of the SWAT technology has led to the creation of multiple novel yeast libraries where new-generation fluorescent reporters are fused at the N' and C' of open reading frames. Efficient access to these data requires a user interface to visualize and compare protein abundance, localization and co-localization across cells, strains, and libraries. YeastRGB (www.yeastRGB.org) was designed to address such a need, through a user-friendly interface that maximizes informative content. It employs a compact display where cells are cropped and tiled together into a 'cell-grid.' This representation enables viewing dozens of cells for a particular strain within a display unit, and up to 30 display units can be arrayed on a standard high-definition screen. Additionally, the display unit allows users to control zoom-level and overlay of images acquired using different color channels. Thus, YeastRGB makes comparing abundance and localization efficient, across thousands of cells from different strains and libraries.


Asunto(s)
Biología Computacional/métodos , Bases de Datos de Proteínas , Biblioteca de Genes , Proteoma/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Almacenamiento y Recuperación de la Información/métodos , Internet , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Fluorescente , Sistemas de Lectura Abierta/genética , Proteoma/genética , Saccharomyces cerevisiae/clasificación , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Interfaz Usuario-Computador
6.
Nat Commun ; 10(1): 2960, 2019 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-31273196

RESUMEN

Clone collections of modified strains ("libraries") are a major resource for systematic studies with the yeast Saccharomyces cerevisiae. Construction of such libraries is time-consuming, costly and confined to the genetic background of a specific yeast strain. To overcome these limitations, we present CRISPR-Cas12a (Cpf1)-assisted tag library engineering (CASTLING) for multiplexed strain construction. CASTLING uses microarray-synthesized oligonucleotide pools and in vitro recombineering to program the genomic insertion of long DNA constructs via homologous recombination. One simple transformation yields pooled libraries with >90% of correctly tagged clones. Up to several hundred genes can be tagged in a single step and, on a genomic scale, approximately half of all genes are tagged with only ~10-fold oversampling. We report several parameters that affect tagging success and provide a quantitative targeted next-generation sequencing method to analyze such pooled collections. Thus, CASTLING unlocks avenues for increasing throughput in functional genomics and cell biology research.


Asunto(s)
Sistemas CRISPR-Cas/genética , Técnicas Genéticas , Saccharomyces cerevisiae/genética , Células Clonales , Biblioteca de Genes , Ingeniería Genética , Genoma Fúngico , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Nucleares/metabolismo
7.
Nat Commun ; 5: 3574, 2014 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-24705096

RESUMEN

Replication fork (RF) pausing occurs at both 'programmed' sites and non-physiological barriers (for example, DNA adducts). Programmed RF pausing is required for site-specific DNA replication termination in Escherichia coli, and this process requires the binding of the polar terminator protein, Tus, to specific DNA sequences called Ter. Here, we demonstrate that Tus-Ter modules also induce polar RF pausing when engineered into the Saccharomyces cerevisiae genome. This heterologous RF barrier is distinct from a number of previously characterized, protein-mediated, RF pause sites in yeast, as it is neither Tof1-dependent nor counteracted by the Rrm3 helicase. Although the yeast replisome can overcome RF pausing at Tus-Ter modules, this event triggers site-specific homologous recombination that requires the RecQ helicase, Sgs1, for its timely resolution. We propose that Tus-Ter can be utilized as a versatile, site-specific, heterologous DNA replication-perturbing system, with a variety of potential applications.


Asunto(s)
Replicación del ADN/fisiología , Escherichia coli/genética , ADN Helicasas/metabolismo , Replicación del ADN/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
8.
Exp Cell Res ; 312(19): 3835-46, 2006 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-17034789

RESUMEN

There are a growing number of proteins which are reported to reside in multiple compartments within the eukaryotic cell. However, lack of appropriate methods limits our knowledge on the true extent of this phenomenon. In this study, we demonstrate a novel application of beta-galactosidase alpha-complementation to study dual distribution of proteins in yeast cells. Using a simple colony color phenotype, we show that alpha-complementation depends on co-compartmentalization of alpha and omega fragments and exploit this to probe dual localization of proteins between the cytosol and mitochondria in yeast. The quality of our assay was assessed by analysis of the known dual targeted enzyme fumarase and several mutant derivatives, which are exclusively localized to one or the other of these subcellular compartments. Addition of the alpha fragment did not abolish the enzymatic activity of the tagged proteins nor did it affect their localization. By examining 10 yeast gene products for distribution between the cytosol and the mitochondria, we demonstrate the potential of alpha-complementation to screen the mitochondrial proteome for dual distribution. Our data indicate the distribution of two uncharacterized proteins--Bna3 and Nif3--between the cytosol and the mitochondria.


Asunto(s)
Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencia de Bases , Compartimento Celular , Citosol/metabolismo , Cartilla de ADN/genética , Fumarato Hidratasa/genética , Fumarato Hidratasa/metabolismo , Prueba de Complementación Genética , Mitocondrias/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transformación Genética , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo
9.
J Biol Chem ; 278(46): 45109-16, 2003 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-12960177

RESUMEN

We have previously proposed that a single translation product of the FUM1 gene encoding fumarase is distributed between the cytosol and mitochondria of Saccharomyces cerevisiae and that all fumarase translation products are targeted and processed in mitochondria before distribution. Thus, fumarase processed in mitochondria returns to the cytosol. In the current work, we (i) generated mutations throughout the coding sequence which resulted in fumarases with altered conformations that are targeted to mitochondria but have lost their ability to be distributed; (ii) showed by mass spectrometry that mature cytosolic and mitochondrial fumarase isoenzymes are identical; and (iii) showed that hsp70 chaperones in the cytosol (Ssa) and mitochondria (Ssc1) can affect fumarase distribution. The results are discussed in light of our model of targeting and distribution, which suggests that rapid folding of fumarase into an import-incompetent state provides the driving force for retrograde movement of the processed protein back to the cytosol through the translocation pore.


Asunto(s)
Fumarato Hidratasa/química , Fumarato Hidratasa/metabolismo , Mitocondrias/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Transporte Biológico , Biotina/metabolismo , Citosol/metabolismo , Electroforesis en Gel de Poliacrilamida , Endopeptidasa K/farmacología , Galactosa/metabolismo , Prueba de Complementación Genética , Proteínas HSP70 de Choque Térmico/genética , Espectrometría de Masas , Modelos Genéticos , Datos de Secuencia Molecular , Mutación , Plásmidos/metabolismo , Conformación Proteica , Pliegue de Proteína , Homología de Secuencia de Aminoácido , Fracciones Subcelulares/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda