Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Cardiovasc Diabetol ; 23(1): 50, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302978

RESUMEN

BACKGROUND: Diabetes mellitus is a chronic disease which is detrimental to cardiovascular health, often leading to secondary microvascular complications, with huge global health implications. Therapeutic interventions that can be applied to multiple vascular beds are urgently needed. Diabetic retinopathy (DR) and diabetic kidney disease (DKD) are characterised by early microvascular permeability changes which, if left untreated, lead to visual impairment and renal failure, respectively. The heparan sulphate cleaving enzyme, heparanase, has previously been shown to contribute to diabetic microvascular complications, but the common underlying mechanism which results in microvascular dysfunction in conditions such as DR and DKD has not been determined. METHODS: In this study, two mouse models of heparan sulphate depletion (enzymatic removal and genetic ablation by endothelial specific Exotosin-1 knock down) were utilized to investigate the impact of endothelial cell surface (i.e., endothelial glycocalyx) heparan sulphate loss on microvascular barrier function. Endothelial glycocalyx changes were measured using fluorescence microscopy or transmission electron microscopy. To measure the impact on barrier function, we used sodium fluorescein angiography in the eye and a glomerular albumin permeability assay in the kidney. A type 2 diabetic (T2D, db/db) mouse model was used to determine the therapeutic potential of preventing heparan sulphate damage using treatment with a novel heparanase inhibitor, OVZ/HS-1638. Endothelial glycocalyx changes were measured as above, and microvascular barrier function assessed by albumin extravasation in the eye and a glomerular permeability assay in the kidney. RESULTS: In both models of heparan sulphate depletion, endothelial glycocalyx depth was reduced and retinal solute flux and glomerular albumin permeability was increased. T2D mice treated with OVZ/HS-1638 had improved endothelial glycocalyx measurements compared to vehicle treated T2D mice and were simultaneously protected from microvascular permeability changes associated with DR and DKD. CONCLUSION: We demonstrate that endothelial glycocalyx heparan sulphate plays a common mechanistic role in microvascular barrier function in the eye and kidney. Protecting the endothelial glycocalyx damage in diabetes, using the novel heparanase inhibitor OVZ/HS-1638, effectively prevents microvascular permeability changes associated with DR and DKD, demonstrating a novel systemic approach to address diabetic microvascular complications.


Asunto(s)
Diabetes Mellitus Tipo 2 , Angiopatías Diabéticas , Nefropatías Diabéticas , Glucuronidasa , Animales , Ratones , Glicocálix/metabolismo , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/prevención & control , Heparitina Sulfato/metabolismo , Heparitina Sulfato/farmacología , Albúminas/farmacología , Angiopatías Diabéticas/etiología , Angiopatías Diabéticas/prevención & control , Angiopatías Diabéticas/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo
2.
Am J Physiol Renal Physiol ; 325(4): F465-F478, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37471420

RESUMEN

Glomerular endothelial cell (GEnC) fenestrations are a critical component of the glomerular filtration barrier. Their unique nondiaphragmed structure is key to their function in glomerular hydraulic permeability, and their aberration in disease can contribute to loss of glomerular filtration function. This review provides a comprehensive update of current understanding of the regulation and biogenesis of fenestrae. We consider diseases in which GEnC fenestration loss is recognized or may play a role and discuss methods with potential to facilitate the study of these critical structures. Literature is drawn from GEnCs as well as other fenestrated cell types such as liver sinusoidal endothelial cells that most closely parallel GEnCs.


Asunto(s)
Células Endoteliales , Enfermedades Renales , Humanos , Células Endoteliales/metabolismo , Endotelio , Glomérulos Renales/metabolismo , Barrera de Filtración Glomerular , Enfermedades Renales/tratamiento farmacológico , Enfermedades Renales/metabolismo
3.
Proc Natl Acad Sci U S A ; 117(27): 15862-15873, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32561647

RESUMEN

Albuminuria is an independent risk factor for the progression to end-stage kidney failure, cardiovascular morbidity, and premature death. As such, discovering signaling pathways that modulate albuminuria is desirable. Here, we studied the transcriptomes of podocytes, key cells in the prevention of albuminuria, under diabetic conditions. We found that Neuropeptide Y (NPY) was significantly down-regulated in insulin-resistant vs. insulin-sensitive mouse podocytes and in human glomeruli of patients with early and late-stage diabetic nephropathy, as well as other nondiabetic glomerular diseases. This contrasts with the increased plasma and urinary levels of NPY that are observed in such conditions. Studying NPY-knockout mice, we found that NPY deficiency in vivo surprisingly reduced the level of albuminuria and podocyte injury in models of both diabetic and nondiabetic kidney disease. In vitro, podocyte NPY signaling occurred via the NPY2 receptor (NPY2R), stimulating PI3K, MAPK, and NFAT activation. Additional unbiased proteomic analysis revealed that glomerular NPY-NPY2R signaling predicted nephrotoxicity, modulated RNA processing, and inhibited cell migration. Furthermore, pharmacologically inhibiting the NPY2R in vivo significantly reduced albuminuria in adriamycin-treated glomerulosclerotic mice. Our findings suggest a pathogenic role of excessive NPY-NPY2R signaling in the glomerulus and that inhibiting NPY-NPY2R signaling in albuminuric kidney disease has therapeutic potential.


Asunto(s)
Albuminuria/metabolismo , Enfermedades Renales/metabolismo , Neuropéptido Y/metabolismo , Receptores de Neuropéptido Y/metabolismo , Transducción de Señal/fisiología , Animales , Arginina/análogos & derivados , Arginina/farmacología , Benzazepinas/farmacología , Diabetes Mellitus Experimental/metabolismo , Nefropatías Diabéticas , Modelos Animales de Enfermedad , Regulación hacia Abajo , Doxorrubicina/farmacología , Humanos , Insulina/metabolismo , Enfermedades Renales/patología , Glomérulos Renales/efectos de los fármacos , Glomérulos Renales/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Neuropéptido Y/farmacología , Neuropéptido Y/orina , Podocitos/metabolismo , Proteómica , Receptores de Neuropéptido Y/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
4.
J Am Soc Nephrol ; 33(6): 1120-1136, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35292439

RESUMEN

BACKGROUND: Glomerular endothelial cell (GEnC) fenestrations are recognized as an essential component of the glomerular filtration barrier, yet little is known about how they are regulated and their role in disease. METHODS: We comprehensively characterized GEnC fenestral and functional renal filtration changes including measurement of glomerular Kf and GFR in diabetic mice (BTBR ob-/ob- ). We also examined and compared human samples. We evaluated Eps homology domain protein-3 (EHD3) and its association with GEnC fenestrations in diabetes in disease samples and further explored its role as a potential regulator of fenestrations in an in vitro model of fenestration formation using b.End5 cells. RESULTS: Loss of GEnC fenestration density was associated with decreased filtration function in diabetic nephropathy. We identified increased diaphragmed fenestrations in diabetes, which are posited to increase resistance to filtration and further contribute to decreased GFR. We identified decreased glomerular EHD3 expression in diabetes, which was significantly correlated with decreased fenestration density. Reduced fenestrations in EHD3 knockdown b.End5 cells in vitro further suggested a mechanistic role for EHD3 in fenestration formation. CONCLUSIONS: This study demonstrates the critical role of GEnC fenestrations in renal filtration function and suggests EHD3 may be a key regulator, loss of which may contribute to declining glomerular filtration function through aberrant GEnC fenestration regulation. This points to EHD3 as a novel therapeutic target to restore filtration function in disease.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Fenómenos Fisiológicos del Sistema Urinario , Animales , Diabetes Mellitus Experimental/metabolismo , Nefropatías Diabéticas/metabolismo , Células Endoteliales/metabolismo , Glomérulos Renales/metabolismo , Ratones
5.
Diabetologia ; 65(5): 879-894, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35211778

RESUMEN

AIMS/HYPOTHESIS: Diabetic cardiomyopathy (DCM) is a serious and under-recognised complication of diabetes. The first sign is diastolic dysfunction, which progresses to heart failure. The pathophysiology of DCM is incompletely understood but microcirculatory changes are important. Endothelial glycocalyx (eGlx) plays multiple vital roles in the microcirculation, including in the regulation of vascular permeability, and is compromised in diabetes but has not previously been studied in the coronary microcirculation in diabetes. We hypothesised that eGlx damage in the coronary microcirculation contributes to increased microvascular permeability and hence to cardiac dysfunction. METHODS: We investigated eGlx damage and cardiomyopathy in mouse models of type 1 (streptozotocin-induced) and type 2 (db/db) diabetes. Cardiac dysfunction was determined by echocardiography. We obtained eGlx depth and coverage by transmission electron microscopy (TEM) on mouse hearts perfusion-fixed with glutaraldehyde and Alcian Blue. Perivascular oedema was assessed from TEM images by measuring the perivascular space area. Lectin-based fluorescence was developed to study eGlx in paraformaldehyde-fixed mouse and human tissues. The eGlx of human conditionally immortalised coronary microvascular endothelial cells (CMVECs) in culture was removed with eGlx-degrading enzymes before measurement of protein passage across the cell monolayer. The mechanism of eGlx damage in the diabetic heart was investigated by quantitative reverse transcription-PCR array and matrix metalloproteinase (MMP) activity assay. To directly demonstrate that eGlx damage disturbs cardiac function, isolated rat hearts were treated with enzymes in a Langendorff preparation. Angiopoietin 1 (Ang1) is known to restore eGlx and so was used to investigate whether eGlx restoration reverses diastolic dysfunction in mice with type 1 diabetes. RESULTS: In a mouse model of type 1 diabetes, diastolic dysfunction (confirmed by echocardiography) was associated with loss of eGlx from CMVECs and the development of perivascular oedema, suggesting increased microvascular permeability. We confirmed in vitro that eGlx removal increases CMVEC monolayer permeability. We identified increased MMP activity as a potential mechanism of eGlx damage and we observed loss of syndecan 4 consistent with MMP activity. In a mouse model of type 2 diabetes we found a similar loss of eGlx preceding the development of diastolic dysfunction. We used isolated rat hearts to demonstrate that eGlx damage (induced by enzymes) is sufficient to disturb cardiac function. Ang1 restored eGlx and this was associated with reduced perivascular oedema and amelioration of the diastolic dysfunction seen in mice with type 1 diabetes. CONCLUSIONS/INTERPRETATION: The association of CMVEC glycocalyx damage with diastolic dysfunction in two diabetes models suggests that it may play a pathophysiological role and the enzyme studies confirm that eGlx damage is sufficient to impair cardiac function. Ang1 rapidly restores the CMVEC glycocalyx and improves diastolic function. Our work identifies CMVEC glycocalyx damage as a potential contributor to the development of DCM and therefore as a therapeutic target.


Asunto(s)
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Cardiomiopatías Diabéticas , Angiopoyetina 1/metabolismo , Animales , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Cardiomiopatías Diabéticas/metabolismo , Células Endoteliales/metabolismo , Glicocálix/metabolismo , Metaloproteinasas de la Matriz/metabolismo , Ratones , Microcirculación , Ratas
6.
J Am Soc Nephrol ; 32(12): 3231-3251, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-35167486

RESUMEN

BACKGROUND: After kidney transplantation, donor-specific antibodies against human leukocyte antigen donor-specific antibodies (HLA-DSAs) drive antibody-mediated rejection (ABMR) and are associated with poor transplant outcomes. However, ABMR histology (ABMRh) is increasingly reported in kidney transplant recipients (KTRs) without HLA-DSAs, highlighting the emerging role of non-HLA antibodies (Abs). METHODS: W e designed a non-HLA Ab detection immunoassay (NHADIA) using HLA class I and II-deficient glomerular endothelial cells (CiGEnCΔHLA) that had been previously generated through CRISPR/Cas9-induced B2M and CIITA gene disruption. Flow cytometry assessed the reactivity to non-HLA antigens of pretransplantation serum samples from 389 consecutive KTRs. The intensity of the signal observed with the NHADIA was associated with post-transplant graft histology assessed in 951 adequate biopsy specimens. RESULTS: W e sequentially applied CRISPR/Cas9 to delete the B2M and CIITA genes to obtain a CiGEnCΔHLA clone. CiGEnCΔHLA cells remained indistinguishable from the parental cell line, CiGEnC, in terms of morphology and phenotype. Previous transplantation was the main determinant of the pretransplantation NHADIA result (P<0.001). Stratification of 3-month allograft biopsy specimens (n=298) according to pretransplantation NHADIA tertiles demonstrated that higher levels of non-HLA Abs positively correlated with increased glomerulitis (P=0.002), microvascular inflammation (P=0.003), and ABMRh (P=0.03). A pretransplantation NHADIA threshold of 1.87 strongly discriminated the KTRs with the highest risk of ABMRh (P=0.005, log-rank test). A multivariate Cox model confirmed that NHADIA status and HLA-DSAs were independent, yet synergistic, predictors of ABMRh. CONCLUSION: The NHADIA identifies non-HLA Abs and strongly predicts graft endothelial injury independent of HLA-DSAs.


Asunto(s)
Sistemas CRISPR-Cas/genética , Rechazo de Injerto/etiología , Antígenos HLA/inmunología , Isoanticuerpos/inmunología , Glomérulos Renales/inmunología , Trasplante de Riñón/efectos adversos , Donantes de Tejidos , Adulto , Anciano , Células Cultivadas , Células Endoteliales/inmunología , Femenino , Eliminación de Gen , Antígenos HLA/genética , Humanos , Masculino , Persona de Mediana Edad , Proteínas Nucleares/genética , Reoperación , Estudios Retrospectivos , Transactivadores/genética , Microglobulina beta-2/genética
7.
Am J Physiol Renal Physiol ; 321(4): F505-F516, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34459222

RESUMEN

Focal segmental glomerulosclerosis (FSGS) and minimal change disease (MCD) are common forms of idiopathic nephrotic syndrome. The causes of these diseases are incompletely understood, but the response of patients to immunosuppressive therapies suggests that their pathogenesis is at least in part immune mediated. Preclinical and clinical research indicates that activation of the classical pathway of complement contributes to glomerular injury in FSGS. Glomerular IgM deposits are also prominent in some patients, raising the possibility that IgM is a trigger of classical pathway activation. In the present study, we examined the pattern of complement activation in the glomeruli and plasma of patients with nephrotic syndrome. We also tested whether patients with FSGS and MCD have elevated levels of natural IgM reactive with epitopes on glomerular endothelial cells and cardiolipin. We found evidence of classical pathway activation in patients with idiopathic nephrotic syndrome compared with healthy control subjects. We also detected higher levels of self-reactive IgM to both targets. Based on these results, IgM and classical pathway activation may contribute to disease pathogenesis in some patients with FSGS and MCD.NEW & NOTEWORTHY IgM is detected in biopsies from some patients with nephrotic syndrome, although this has been attributed to passive trapping of the protein. We found, however, that IgM colocalizes with complement activation fragments in some glomeruli. We also found that affected patients had higher levels of IgM reactive to glomerular endothelial cell epitopes. Thus, IgM activates the complement system in the glomeruli of some patients with nephrotic syndrome and may contribute to injury.


Asunto(s)
Cardiolipinas/inmunología , Vía Clásica del Complemento , Proteínas del Sistema Complemento/análisis , Células Endoteliales/inmunología , Epítopos , Glomeruloesclerosis Focal y Segmentaria/inmunología , Inmunoglobulina M/análisis , Glomérulos Renales/inmunología , Nefrosis Lipoidea/inmunología , Síndrome Nefrótico/inmunología , Adulto , Anciano , Especificidad de Anticuerpos , Estudios de Casos y Controles , Vía Clásica del Complemento/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Femenino , Glomeruloesclerosis Focal y Segmentaria/sangre , Glomeruloesclerosis Focal y Segmentaria/tratamiento farmacológico , Glomeruloesclerosis Focal y Segmentaria/patología , Humanos , Inmunoglobulina M/sangre , Inmunosupresores/uso terapéutico , Glomérulos Renales/efectos de los fármacos , Glomérulos Renales/patología , Masculino , Persona de Mediana Edad , Nefrosis Lipoidea/tratamiento farmacológico , Nefrosis Lipoidea/patología , Síndrome Nefrótico/tratamiento farmacológico , Síndrome Nefrótico/patología , Resultado del Tratamiento , Adulto Joven
8.
Am J Pathol ; 190(4): 742-751, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32035881

RESUMEN

The endothelial glycocalyx is a vital regulator of vascular permeability. Damage to this delicate layer can result in increased protein and water transit. The clinical importance of albuminuria as a predictor of kidney disease progression and vascular disease has driven research in this area. This review outlines how research to date has attempted to measure the contribution of the endothelial glycocalyx to vessel wall permeability. We discuss the evidence for the role of the endothelial glycocalyx in regulating permeability in discrete areas of the vasculature and highlight the inherent limitations of the data that have been produced to date. In particular, this review emphasizes the difficulties in interpreting urinary albumin levels in early disease models. In addition, the research that supports the view that glycocalyx damage is a key pathologic step in a diverse array of clinical conditions, including diabetic complications, sepsis, preeclampsia, and atherosclerosis, is summarized. Finally, novel methods are discussed, including an ex vivo glomerular permeability assay that enhances the understanding of permeability changes in disease.


Asunto(s)
Permeabilidad Capilar , Endotelio Vascular/metabolismo , Glicocálix/fisiología , Enfermedades Vasculares/patología , Animales , Humanos , Enfermedades Vasculares/metabolismo
9.
Kidney Int ; 97(5): 951-965, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32037077

RESUMEN

The endothelial glycocalyx is a key component of the glomerular filtration barrier. We have shown that matrix metalloproteinase (MMP)-mediated syndecan 4 shedding is a mechanism of glomerular endothelial glycocalyx damage in vitro, resulting in increased albumin permeability. Here we sought to determine whether this mechanism is important in early diabetic kidney disease, by studying streptozotocin-induced type 1 diabetes in DBA2/J mice. Diabetic mice were albuminuric, had increased glomerular albumin permeability and endothelial glycocalyx damage. Syndecan 4 mRNA expression was found to be upregulated in isolated glomeruli and in flow cytometry-sorted glomerular endothelial cells. In contrast, glomerular endothelial luminal surface syndecan 4 and Marasmium oreades agglutinin lectin labelling measurements were reduced in the diabetic mice. Similarly, syndecan 4 protein expression was significantly decreased in isolated glomeruli but increased in plasma and urine, suggesting syndecan 4 shedding. Mmp-2, 9 and 14 mRNA expression were upregulated in isolated glomeruli, suggesting a possible mechanism of glycocalyx damage and albuminuria. We therefore characterised in detail the activity of MMP-2 and 9 and found significant increases in kidney cortex, plasma and urine. Treatment with MMP-2/9 inhibitor I for 21 days, started six weeks after diabetes induction, restored endothelial glycocalyx depth and coverage and attenuated diabetes-induced albuminuria and reduced glomerular albumin permeability. MMP inhibitor treatment significantly attenuated glomerular endothelial and plasma syndecan 4 shedding and inhibited plasma MMP activity. Thus, our studies confirm the importance of MMPs in endothelial glycocalyx damage and albuminuria in early diabetes and demonstrate that this pathway is amenable to therapeutic intervention. Hence, treatments targeted at glycocalyx protection by MMP inhibition may be of benefit in diabetic kidney disease.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Animales , Células Endoteliales , Barrera de Filtración Glomerular , Glicocálix , Metaloproteinasas de la Matriz , Ratones , Sindecano-4/genética
10.
J Am Soc Nephrol ; 30(4): 692-709, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30850439

RESUMEN

BACKGROUND: Although anti-HLA antibodies (Abs) cause most antibody-mediated rejections of renal allografts, non-anti-HLA Abs have also been postulated to contribute. A better understanding of such Abs in rejection is needed. METHODS: We conducted a nationwide study to identify kidney transplant recipients without anti-HLA donor-specific Abs who experienced acute graft dysfunction within 3 months after transplantation and showed evidence of microvascular injury, called acute microvascular rejection (AMVR). We developed a crossmatch assay to assess serum reactivity to human microvascular endothelial cells, and used a combination of transcriptomic and proteomic approaches to identify non-HLA Abs. RESULTS: We identified a highly selected cohort of 38 patients with early acute AMVR. Biopsy specimens revealed intense microvascular inflammation and the presence of vasculitis (in 60.5%), interstitial hemorrhages (31.6%), or thrombotic microangiopathy (15.8%). Serum samples collected at the time of transplant showed that previously proposed anti-endothelial cell Abs-angiotensin type 1 receptor (AT1R), endothelin-1 type A and natural polyreactive Abs-did not increase significantly among patients with AMVR compared with a control group of stable kidney transplant recipients. However, 26% of the tested AMVR samples were positive for AT1R Abs when a threshold of 10 IU/ml was used. The crossmatch assay identified a common IgG response that was specifically directed against constitutively expressed antigens of microvascular glomerular cells in patients with AMVR. Transcriptomic and proteomic analyses identified new targets of non-HLA Abs, with little redundancy among individuals. CONCLUSIONS: Our findings indicate that preformed IgG Abs targeting non-HLA antigens expressed on glomerular endothelial cells are associated with early AMVR, and that in vitro cell-based assays are needed to improve risk assessments before transplant.


Asunto(s)
Rechazo de Injerto/inmunología , Hemorragia/inmunología , Inmunoglobulina G/sangre , Receptor de Angiotensina Tipo 1/inmunología , Microangiopatías Trombóticas/inmunología , Vasculitis/inmunología , Enfermedad Aguda , Adulto , Anciano , Células Endoteliales/inmunología , Endotelina-1/inmunología , Femenino , Rechazo de Injerto/patología , Rechazo de Injerto/fisiopatología , Hemorragia/patología , Humanos , Glomérulos Renales/patología , Trasplante de Riñón/efectos adversos , Masculino , Microvasos/patología , Persona de Mediana Edad , Microangiopatías Trombóticas/patología , Factores de Tiempo , Vasculitis/patología
11.
Kidney Int ; 95(1): 94-107, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30389198

RESUMEN

Aldosterone contributes to end-organ damage in heart failure and chronic kidney disease. Mineralocorticoid-receptor inhibitors limit activation of the receptor by aldosterone and slow disease progression, but side effects, including hyperkalemia, limit their clinical use. Damage to the endothelial glycocalyx (a luminal biopolymer layer) has been implicated in the pathogenesis of endothelial dysfunction and albuminuria, but to date no one has investigated whether the glomerular endothelial glycocalyx is affected by aldosterone. In vitro, human glomerular endothelial cells exposed to 0.1 nM aldosterone and 145 mMol NaCl exhibited reduced cell surface glycocalyx components (heparan sulfate and syndecan-4) and disrupted shear sensing consistent with damage of the glycocalyx. In vivo, administration of 0.6 µg/g/d of aldosterone (subcutaneous minipump) and 1% NaCl drinking water increased glomerular matrix metalloproteinase 2 activity, reduced syndecan 4 expression, and caused albuminuria. Intravital multiphoton imaging confirmed that aldosterone caused damage of the glomerular endothelial glycocalyx and increased the glomerular sieving coefficient for albumin. Targeting matrix metalloproteinases 2 and 9 with a specific gelatinase inhibitor preserved the glycocalyx, blocked the rise in glomerular sieving coefficient, and prevented albuminuria. Together these data suggest that preservation of the glomerular endothelial glycocalyx may represent a novel strategy for limiting the pathological effects of aldosterone.


Asunto(s)
Albuminuria/patología , Aldosterona/metabolismo , Glicocálix/patología , Insuficiencia Renal Crónica/patología , Albuminuria/orina , Animales , Línea Celular , Modelos Animales de Enfermedad , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/patología , Glicocálix/efectos de los fármacos , Heparitina Sulfato/metabolismo , Humanos , Glomérulos Renales/citología , Glomérulos Renales/efectos de los fármacos , Glomérulos Renales/patología , Masculino , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Inhibidores de la Metaloproteinasa de la Matriz/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Insuficiencia Renal Crónica/orina , Cloruro de Sodio/farmacología , Sindecano-4/metabolismo
12.
Microcirculation ; : e12534, 2019 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-30703289

RESUMEN

BACKGROUND: Diabetic nephropathy is the most common cause of end-stage renal failure in the western world and Asia. The mechanisms are not fully elucidated, but disruption of glomerular endothelial glycocalyx and shedding of its components including syndecans has been implicated. AIMS: We hypothesize that reduced glomerular filtration in diabetes is caused by disruption of endothelial glycocalyx in glomeruli, including increased shedding of syndecan-4. The aim of this study was to determine the effects of experimental diabetic conditions by means of hyperglycemia and IL-1ß exposure on syndecan-4 shedding in GEnC, and to investigate regulation of shedding by sheddases. RESULTS: We found that in GEnC the expression of syndecan-4 is higher than that of the other syndecans. In polarized GEnC, apical shedding of syndecan-4 and syndecan-4 gene expression was increased by 60% after IL-1ß-stimulation, but not affected by hyperglycemic conditions. This was accompanied by a 50% increase in MMP9 gene expression in IL-1ß-stimulated cells but not hyperglycemia. MMP9 knockdown reduced syndecan-4 shedding by 50%. CONCLUSION: IL-1ß but not hyperglycemia increases the shedding of syndecan-4 from GEnC in an MMP9-dependent manner. This provides a potential mechanism of GEnC damage in diabetes and other inflammatory conditions.

13.
Am J Pathol ; 188(9): 1982-1992, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29981742

RESUMEN

Effective diabetic kidney disease (DKD) biomarkers remain elusive, and urinary miRNAs represent a potential source of novel noninvasive disease sentinels. We profiled 754 miRNAs in pooled urine samples from DKD patients (n = 20), detecting significantly increased miR-126, miR-155, and miR-29b compared with controls (n = 20). These results were confirmed in an independent cohort of 89 DKD patients, 62 diabetic patients without DKD, and 41 controls: miR-126 (2.8-fold increase; P < 0.0001), miR-155 (1.8-fold increase; P < 0.001), and miR-29b (4.6-fold increase; P = 0.024). Combined receiver operating characteristic curve analysis resulted in an area under the curve of 0.8. A relative quantification threshold equivalent to 80% sensitivity for each miRNA gave a positive signal for 48% of DKD patients compared with 3.6% of diabetic patients without DKD. Laser-capture microdissection of renal biopsy specimens, followed by quantitative RT-PCR, detected miR-155 in glomeruli and proximal and distal tubules, whereas miR-126 and miR-29b were most abundant in glomerular extracts. Subsequent experiments showed miR-126 and miR-29b enrichment in glomerular endothelial cells (GEnCs) compared with podocytes, proximal tubular epithelial cells, and fibroblasts. Significantly increased miR-126 and miR-29b were detected in GEnC conditioned medium in response to tumor necrosis factor-α and transforming growth factor-ß1, respectively. Our data reveal an altered urinary miRNA profile associated with DKD and link these variations to miRNA release from GEnCs.


Asunto(s)
Biomarcadores/orina , Nefropatías Diabéticas/diagnóstico , MicroARNs/genética , Adulto , Anciano , Estudios de Casos y Controles , Estudios de Cohortes , Biología Computacional , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/orina , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , MicroARNs/orina , Persona de Mediana Edad , Pronóstico , Curva ROC
15.
Metabolomics ; 15(10): 131, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31576432

RESUMEN

INTRODUCTION: Shiga toxin 2a (Stx2a) induces hemolytic uremic syndrome (STEC HUS) by targeting glomerular endothelial cells (GEC). OBJECTIVES: We investigated in a metabolomic analysis the response of a conditionally immortalized, stable glomerular endothelial cell line (ciGEnC) to Stx2a stimulation as a cell culture model for STEC HUS. METHODS: CiGEnC were treated with tumor necrosis factor-(TNF)α, Stx2a or sequentially with TNFα and Stx2a. We performed a metabolomic high-throughput screening by lipid- or gas chromatography and subsequent mass spectrometry. Metabolite fold changes in stimulated ciGEnC compared to untreated cells were calculated. RESULTS: 320 metabolites were identified and investigated. In response to TNFα + Stx2a, there was a predominant increase in intracellular free fatty acids and amino acids. Furthermore, lipid- and protein derived pro-inflammatory mediators, oxidative stress and an augmented intracellular energy turnover were increased in ciGEnC. Levels of most biochemicals related to carbohydrate metabolism remained unchanged. CONCLUSION: Stimulation of ciGEnC with TNFα + Stx2a is associated with profound metabolic changes indicative of increased inflammation, oxidative stress and energy turnover.


Asunto(s)
Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Glomérulos Renales/citología , Metabolómica , Toxina Shiga II/farmacología , Recuento de Células , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Células Endoteliales/citología , Humanos , Inflamación/inducido químicamente , Inflamación/metabolismo , Inflamación/patología , Lipopolisacáridos , Análisis Multivariante , Toxina Shiga II/metabolismo
16.
Mol Ther ; 26(12): 2823-2837, 2018 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-30274787

RESUMEN

MicroRNAs regulate endothelial function and angiogenesis, but their implication in pericyte biology remains undetermined. A PCR array, covering a panel of 379 human microRNAs, showed microRNA-532-5p to be one of the most differentially modulated by hypoxia, which was confirmed by qPCR in both skeletal muscle and adventitial pericytes. Furthermore, microRNA-532-5p was upregulated in murine muscular pericytes early after experimentally induced ischemia, decreasing below baseline after reperfusion. Transfection of human pericytes with anti-microRNA, microRNA-mimic, or controls indicates microRNA-532-5p modulates pro-angiogenic activity via transcriptional regulation of angiopoietin-1. Tie-2 blockade abrogated the ability of microRNA-532-5p-overexpressing pericytes to promote endothelial network formation in vitro. However, angiopoietin-1 is not a direct target of microRNA-532-5p. In silico analysis of microRNA-532-5p inhibitory targets associated with angiopoietin-1 transcription indicated three potential candidates, BACH1, HIF1AN, and EGLN1. Binding of microRNA-532-5p to the BACH1 3' UTR was confirmed by luciferase assay. MicroRNA-532-5p silencing increased BACH1, while a microRNA-532-5p mimic decreased expression. Silencing of BACH1 modulated angiopoietin-1 gene and protein expression. ChIP confirmed BACH1 transcriptional regulation of angiopoietin-1 promoter. Finally, microRNA-532-5p overexpression increased pericyte coverage in an in vivo Matrigel assay, suggesting its role in vascular maturation. This study provides a new mechanistic understanding of the transcriptional program orchestrating angiopoietin-1/Tie-2 signaling in human pericytes.


Asunto(s)
Angiopoyetina 1/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Regulación de la Expresión Génica , MicroARNs/genética , Pericitos/metabolismo , Interferencia de ARN , Comunicación Autocrina , Biomarcadores , Perfilación de la Expresión Génica , Genes Reporteros , Humanos , Hipoxia , Comunicación Paracrina , Fenotipo , Transcriptoma
17.
Kidney Int ; 93(5): 1086-1097, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29433915

RESUMEN

Increased urinary albumin excretion is a key feature of glomerular disease but has limitations as a measure of glomerular permeability. Here we describe a novel assay to measure the apparent albumin permeability of single capillaries in glomeruli, isolated from perfused kidneys cleared of red blood cells. The rate of decline of the albumin concentration within the capillary lumen was quantified using confocal microscopy and used to calculate apparent permeability. The assay was extensively validated and provided robust, reproducible estimates of glomerular albumin permeability. These values were comparable with previous in vivo data, showing this assay could be applied to human as well as rodent glomeruli. To confirm this, we showed that targeted endothelial glycocalyx disruption resulted in increased glomerular albumin permeability in mice. Furthermore, incubation with plasma from patients with post-transplant recurrence of nephrotic syndrome increased albumin permeability in rat glomeruli compared to remission plasma. Finally, in glomeruli isolated from rats with early diabetes there was a significant increase in albumin permeability and loss of endothelial glycocalyx, both of which were ameliorated by angiopoietin-1. Thus, a glomerular permeability assay, producing physiologically relevant values with sufficient sensitivity to measure changes in glomerular permeability and independent of tubular function, was developed and validated. This assay significantly advances the ability to study biology and disease in rodent and human glomeruli.


Asunto(s)
Bioensayo/métodos , Capilares/metabolismo , Permeabilidad Capilar , Glomérulos Renales/irrigación sanguínea , Albúmina Sérica/metabolismo , Albuminuria/metabolismo , Albuminuria/fisiopatología , Angiopoyetina 1/farmacología , Animales , Capilares/efectos de los fármacos , Capilares/fisiopatología , Permeabilidad Capilar/efectos de los fármacos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatología , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/fisiopatología , Femenino , Glicocálix/metabolismo , Humanos , Técnicas In Vitro , Cinética , Masculino , Ratones Endogámicos C57BL , Microscopía Confocal , Síndrome Nefrótico/sangre , Síndrome Nefrótico/fisiopatología , Ratas Sprague-Dawley , Reproducibilidad de los Resultados
18.
Am J Physiol Regul Integr Comp Physiol ; 314(3): R427-R432, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29212810

RESUMEN

Preeclampsia is a pregnancy-specific disorder of maternal hypertension and reduced renal hemodynamics linked to reduced endothelial function. Placental ischemia is thought to be the culprit of this disease, as it causes the release of factors like tumor necrosis factor (TNF)-α that induce vascular endothelin-1 (ET-1) production. Interestingly, placental ischemia-induced hypertension in rats [reduced uterine perfusion pressure (RUPP) model] is abolished by ETA receptor blockade, suggesting a critical role for ET-1. Although it has been found that systemic induction of heme oxygenase (HO)-1 is associated with reduced ET-1 production and attenuated hypertension, it is unclear whether HO-1 directly modulates the increased ET-1 response to placental factors. We tested the hypothesis that HO-1 or its metabolites inhibit ET-1 production in human glomerular endothelial cells induced by serum of RUPP rats or TNF-α. Serum (5%) from RUPP hypertensive (mean arterial blood pressure 119 ± 9 mmHg) vs. normotensive pregnant (NP, 101 ± 6 mmHg, P < 0.001) rats increased ET-1 production (RUPP 168.8 ± 18.1 pg/ml, NP 80.3 ± 22.7 pg/ml, P < 0.001, n = 12/group). HO-1 induction [25 µM cobalt photoporphyrin (CoPP)] abolished RUPP serum-induced ET-1 production (1.6 ± 0.8 pg/ml, P < 0.001), whereas bilirubin (10 µM) significantly attenuated ET-1 release (125.3 ± 5.2 pg/ml, P = 0.005). Furthermore, TNF-α-induced ET-1 production (TNF-α 31.0 ± 8.4 vs. untreated 7.5 ± 0.4 pg/ml, P < 0.001) was reduced by CoPP (1.5 ± 0.8 pg/ml, P < 0.001) and bilirubin (10.5 ± 4.3 pg/ml, P < 0.001). These results suggest that circulating factors released during placental ischemia target the maternal glomerular endothelium to increase ET-1, and that pharmacological induction of HO-1 or bilirubin could be a treatment strategy to block this prohypertensive pathway in preeclampsia.


Asunto(s)
Células Endoteliales/enzimología , Endotelina-1/metabolismo , Hemo-Oxigenasa 1/metabolismo , Isquemia/enzimología , Glomérulos Renales/enzimología , Placenta/irrigación sanguínea , Circulación Placentaria , Preeclampsia/enzimología , Animales , Presión Arterial , Bilirrubina/farmacología , Biliverdina/farmacología , Boranos/farmacología , Carbonatos/farmacología , Células Cultivadas , Modelos Animales de Enfermedad , Células Endoteliales/efectos de los fármacos , Inducción Enzimática , Femenino , Isquemia/sangre , Isquemia/fisiopatología , Glomérulos Renales/efectos de los fármacos , Preeclampsia/sangre , Preeclampsia/fisiopatología , Embarazo , Protoporfirinas/farmacología , Ratas Sprague-Dawley , Factor de Necrosis Tumoral alfa/farmacología
19.
Arterioscler Thromb Vasc Biol ; 37(7): 1371-1379, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28495931

RESUMEN

OBJECTIVE: An excessive release and impaired degradation of neutrophil extracellular traps (NETs) leads to the continuous exposure of NETs to the endothelium in a variety of hematologic and autoimmune disorders, including lupus nephritis. This study aims to unravel the mechanisms through which NETs jeopardize vascular integrity. APPROACH AND RESULTS: Microvascular and macrovascular endothelial cells were exposed to NETs, and subsequent effects on endothelial integrity and function were determined in vitro and in vivo. We found that endothelial cells have a limited capacity to internalize NETs via the receptor for advanced glycation endproducts. An overflow of the phagocytic capacity of endothelial cells for NETs resulted in the persistent extracellular presence of NETs, which rapidly altered endothelial cell-cell contacts and induced vascular leakage and transendothelial albumin passage through elastase-mediated proteolysis of the intercellular junction protein VE-cadherin. Furthermore, NET-associated elastase promoted the nuclear translocation of junctional ß-catenin and induced endothelial-to-mesenchymal transition in cultured endothelial cells. In vivo, NETs could be identified in kidney samples of diseased MRL/lpr mice and patients with lupus nephritis, in whom the glomerular presence of NETs correlated with the severity of proteinuria and with glomerular endothelial-to-mesenchymal transition. CONCLUSIONS: These results indicate that an excess of NETs exceeds the phagocytic capacity of endothelial cells for NETs and promotes vascular leakage and endothelial-to-mesenchymal transition through the degradation of VE-cadherin and the subsequent activation of ß-catenin signaling. Our data designate NET-associated elastase as a potential therapeutic target in the prevention of endothelial alterations in diseases characterized by aberrant NET release.


Asunto(s)
Transición Epitelial-Mesenquimal , Trampas Extracelulares/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Glomérulos Renales/metabolismo , Nefritis Lúpica/metabolismo , Neutrófilos/metabolismo , Adulto , Animales , Antígenos CD/metabolismo , Cadherinas/metabolismo , Permeabilidad Capilar , Clatrina/metabolismo , Modelos Animales de Enfermedad , Endocitosis , Trampas Extracelulares/inmunología , Células Endoteliales de la Vena Umbilical Humana/inmunología , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Glomérulos Renales/inmunología , Glomérulos Renales/patología , Elastasa de Leucocito/metabolismo , Nefritis Lúpica/inmunología , Nefritis Lúpica/patología , Ratones Endogámicos CBA , Ratones Endogámicos MRL lpr , Neutrófilos/inmunología , Neutrófilos/patología , Fagocitosis , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Índice de Severidad de la Enfermedad , Transducción de Señal , Factores de Tiempo , Adulto Joven , beta Catenina/metabolismo
20.
J Physiol ; 595(15): 5015-5035, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28524373

RESUMEN

KEY POINTS: We have developed novel techniques for paired, direct, real-time in vivo quantification of endothelial glycocalyx structure and associated microvessel permeability. Commonly used imaging and analysis techniques yield measurements of endothelial glycocalyx depth that vary by over an order of magnitude within the same vessel. The anatomical distance between maximal glycocalyx label and maximal endothelial cell plasma membrane label provides the most sensitive and reliable measure of endothelial glycocalyx depth. Sialic acid residues of the endothelial glycocalyx regulate glycocalyx structure and microvessel permeability to both water and albumin. ABSTRACT: The endothelial glycocalyx forms a continuous coat over the luminal surface of all vessels, and regulates multiple vascular functions. The contribution of individual components of the endothelial glycocalyx to one critical vascular function, microvascular permeability, remains unclear. We developed novel, real-time, paired methodologies to study the contribution of sialic acids within the endothelial glycocalyx to the structural and functional permeability properties of the same microvessel in vivo. Single perfused rat mesenteric microvessels were perfused with fluorescent endothelial cell membrane and glycocalyx labels, and imaged with confocal microscopy. A broad range of glycocalyx depth measurements (0.17-3.02 µm) were obtained with different labels, imaging techniques and analysis methods. The distance between peak cell membrane and peak glycocalyx label provided the most reliable measure of endothelial glycocalyx anatomy, correlating with paired, numerically smaller values of endothelial glycocalyx depth (0.078 ± 0.016 µm) from electron micrographs of the same portion of the same vessel. Disruption of sialic acid residues within the endothelial glycocalyx using neuraminidase perfusion decreased endothelial glycocalyx depth and increased apparent solute permeability to albumin in the same vessels in a time-dependent manner, with changes in all three true vessel wall permeability coefficients (hydraulic conductivity, reflection coefficient and diffusive solute permeability). These novel technologies expand the range of techniques that permit direct studies of the structure of the endothelial glycocalyx and dependent microvascular functions in vivo, and demonstrate that sialic acid residues within the endothelial glycocalyx are critical regulators of microvascular permeability to both water and albumin.


Asunto(s)
Permeabilidad Capilar , Células Endoteliales/metabolismo , Glicocálix/metabolismo , Microvasos/metabolismo , Ácidos Siálicos/metabolismo , Albúminas/metabolismo , Animales , Células Endoteliales/ultraestructura , Glicocálix/ultraestructura , Masculino , Mesenterio/irrigación sanguínea , Microscopía Electrónica de Transmisión , Microvasos/ultraestructura , Ratas , Ratas Sprague-Dawley , Agua/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda