Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Soft Matter ; 20(9): 1996-2007, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38323652

RESUMEN

In cell clusters, the prominent factors at play encompass contractility-based enhanced tissue surface tension and cell unjamming transition. The former effect pertains to the boundary effect, while the latter constitutes a bulk effect. Both effects share outcomes of inducing significant elongation in cells. This elongation is so substantial that it surpasses the limits of linear elasticity, thereby giving rise to additional effects. To investigate these effects, we employ atomic force microscopy (AFM) to analyze how the mechanical properties of individual cells change under such considerable elongation. Our selection of cell lines includes MCF-10A, chosen for its pronounced demonstration of the extended differential adhesion hypothesis (eDAH), and MDA-MB-436, selected due to its manifestation of cell unjamming behavior. In the AFM analyses, we observe a common trend in both cases: as elongation increases, both cell lines exhibit strain stiffening. Notably, this effect is more prominent in MCF-10A compared to MDA-MB-436. Subsequently, we employ AFM on a dynamic range of 1-200 Hz to probe the mechanical characteristics of cell spheroids, focusing on both surface and bulk mechanics. Our findings align with the results from single cell investigations. Specifically, MCF-10A cells, characterized by strong contractile tissue tension, exhibit the greatest stiffness on their surface. Conversely, MDA-MB-436 cells, which experience significant elongation, showcase their highest stiffness within the bulk region. Consequently, the concept of single cell strain stiffening emerges as a crucial element in understanding the mechanics of multicellular spheroids (MCSs), even in the case of MDA-MB-436 cells, which are comparatively softer in nature.


Asunto(s)
Esferoides Celulares , Línea Celular , Elasticidad , Células Cultivadas , Microscopía de Fuerza Atómica/métodos
2.
Artículo en Alemán | MEDLINE | ID: mdl-38710216

RESUMEN

OBJECTIVE: Reinforcement and sustainability of sports and exercise therapy in inpatient depression treatment. METHODS: Randomized controlled study with 3 measurement times: t0 admission to the study, t1 after four weeks, t2 two months after discharge. 96 inpatients with depressive disorders (ICD-10 F32, F33) were randomly assigned to an intervention group (IG) or a control group (KG). In addition to sports and exercise therapy (KG), the IG received an educational and motivational session on the importance of sports and exercise, as well as a motivational final discussion. RESULTS: Endurance performance and physical fitness improved more significantly in the IG than in the CG over the 3 measurement times. The motivational final discussion was rated as more helpful. DISCUSSION: The intervention was well accepted by the patients and partially increased the effects of sports and exercise therapy. Not only psychological aspects of depression treatment were influenced, but also measurable physical effects. CONCLUSION: The practical and time-efficient motivational intervention in inpatient psychiatric care can complement sports and exercise therapy for depressive patients.

3.
Cell Microbiol ; 23(10): e13378, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34245079

RESUMEN

The human pathogenic fungus Candida albicans is a frequent cause of mucosal infections. Although the ability to transition from the yeast to the hypha morphology is essential for virulence, hypha formation and host cell invasion per se are not sufficient for the induction of epithelial damage. Rather, the hypha-associated peptide toxin, candidalysin, a product of the Ece1 polyprotein, is the critical damaging factor. While synthetic, exogenously added candidalysin is sufficient to damage epithelial cells, the level of damage does not reach the same level as invading C. albicans hyphae. Therefore, we hypothesized that a combination of fungal attributes is required to deliver candidalysin to the invasion pocket to enable the full damaging potential of C. albicans during infection. Utilising a panel of C. albicans mutants with known virulence defects, we demonstrate that the full damage potential of C. albicans requires the coordinated delivery of candidalysin to the invasion pocket. This process requires appropriate epithelial adhesion, hyphal extension and invasion, high levels of ECE1 transcription, proper Ece1 processing and secretion of candidalysin. To confirm candidalysin delivery, we generated camelid VH Hs (nanobodies) specific for candidalysin and demonstrate localization and accumulation of the toxin only in C. albicans-induced invasion pockets. In summary, a defined combination of virulence attributes and cellular processes is critical for delivering candidalysin to the invasion pocket to enable the full damage potential of C. albicans during mucosal infection. TAKE AWAYS: Candidalysin is a peptide toxin secreted by C. albicans causing epithelial damage. Candidalysin delivery to host cell membranes requires specific fungal attributes. Candidalysin accumulates in invasion pockets created by invasive hyphae. Camelid nanobodies enabled visualisation of candidalysin in the invasion pocket.


Asunto(s)
Candida albicans , Proteínas Fúngicas , Proteínas Fúngicas/genética , Humanos , Hifa , Virulencia
4.
Soft Matter ; 17(47): 10744-10752, 2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34787626

RESUMEN

Biomechanical changes are critical for cancer progression. However, the relationship between the rheology of single cells measured ex-vivo and the living tumor is not yet understood. Here, we combined single-cell rheology of cells isolated from primary tumors with in vivo bulk tumor rheology in patients with brain tumors. Eight brain tumors (3 glioblastoma, 3 meningioma, 1 astrocytoma, 1 metastasis) were investigated in vivo by magnetic resonance elastography (MRE), and after surgery by the optical stretcher (OS). MRE was performed in a 3-Tesla clinical MRI scanner and magnitude modulus |G*|, loss angle φ, storage modulus G', and loss modulus G'' were derived. OS experiments measured cellular creep deformation in response to laser-induced step stresses. We used a Kelvin-Voigt model to deduce two parameters related to cellular stiffness (µKV) and cellular viscosity (ηKV) from OS measurements in a time regimen that overlaps with that of MRE. We found that single-cell µKV was correlated with |G*| (R = 0.962, p < 0.001) and G'' (R = 0.883, p = 0.004) but not G' of the bulk tissue. These results suggest that single-cell stiffness affects tissue viscosity in brain tumors. The observation that viscosity parameters of individual cells and bulk tissue were not correlated suggests that collective mechanical interactions (i.e. emergent effects or cellular unjamming) of many cancer cells, which depend on cellular stiffness, influence the mechanical dissipation behavior of the bulk tissue. Our results are important to understand the emergent rheology of active multiscale compound materials such as brain tumors and its role in disease progression.


Asunto(s)
Neoplasias Encefálicas , Diagnóstico por Imagen de Elasticidad , Encéfalo , Neoplasias Encefálicas/diagnóstico por imagen , Elasticidad , Humanos , Imagen por Resonancia Magnética , Reología , Viscosidad
5.
Soft Matter ; 15(14): 3055-3064, 2019 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-30912548

RESUMEN

Collagen accounts for the major extracellular matrix (ECM) component in many tissues and provides mechanical support for cells. Magnetic Resonance (MR) Imaging, MR based diffusion measurements and MR Elastography (MRE) are considered sensitive to the microstructure of tissues including collagen networks of the ECM. However, little is known whether water diffusion interacts with viscoelastic properties of tissues. This study combines highfield MR based diffusion measurements, novel compact tabletop MRE and confocal microscopy in collagen networks of different cross-linking states (untreated collagen gels versus additional treatment with glutaraldehyde). The consistency of bulk rheology and MRE within a wide dynamic range is demonstrated in heparin gels, a viscoelastic standard for MRE. Additional crosslinking of collagen led to an 8-fold increased storage modulus, a 4-fold increased loss modulus and a significantly decreased power law exponent, describing multi-relaxational behavior, corresponding to a pronounced transition from viscous-soft to elastic-rigid properties. Collagen network changes were not detectable by MR based diffusion measurements and microscopy which are sensitive to the micrometer scale. The MRE-measured shear modulus is sensitive to collagen fiber interactions which take place on the intrafiber level such as fiber stiffness. The insensitivity of MR based diffusion measurements to collagen hydrogels of different cross-linking states alludes that congeneric collagen structures in connective tissues do not hinder extracellular diffusive water transport. Furthermore, the glutaraldehyde induced rigorous changes in viscoelastic properties indicate that intrafibrillar dissipation is the dominant mode of viscous dissipation in collagen-dominated connective tissue.


Asunto(s)
Colágeno/química , Colágeno/metabolismo , Tejido Conectivo/química , Tejido Conectivo/metabolismo , Elasticidad , Solventes/química , Agua/química , Animales , Bovinos , Tejido Conectivo/diagnóstico por imagen , Difusión , Imagen por Resonancia Magnética , Viscosidad
6.
Mol Cell ; 43(6): 1040-6, 2011 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-21925392

RESUMEN

The epigenetic activator Mixed lineage leukemia 1 (MLL1) is paramount for embryonic development and hematopoiesis. Here, we demonstrate that the long, noncoding RNA (lncRNA) Mistral (Mira) activates transcription of the homeotic genes Hoxa6 and Hoxa7 in mouse embryonic stem cells (mESC) by recruiting MLL1 to chromatin. The Mira gene is located in the spacer DNA region (SDR) separating Hoxa6 and Hoxa7, transcriptionally silent in mESCs, and activated by retinoic acid. Mira-mediated recruitment of MLL1 to the Mira gene triggers dynamic changes in chromosome conformation, culminating in activation of Hoxa6 and Hoxa7 transcription. Hoxa6 and Hoxa7 activate the expression of genes involved in germ layer specification during mESC differentiation in a cooperative and redundant fashion. Our results connect the lncRNA Mira with the recruitment of MLL1 to target genes and implicate lncRNAs in epigenetic activation of gene expression during vertebrate cell-fate determination.


Asunto(s)
Diferenciación Celular/genética , Cromatina/metabolismo , Células Madre Embrionarias/metabolismo , Proteínas de Homeodominio/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Proteínas de Neoplasias/metabolismo , ARN no Traducido/fisiología , Animales , Células Madre Embrionarias/citología , N-Metiltransferasa de Histona-Lisina , Proteínas de Homeodominio/genética , Ratones , Proteínas de Neoplasias/genética , Activación Transcripcional/genética
7.
NMR Biomed ; 31(10): e3831, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29215759

RESUMEN

In addition to genetic, morphological and biochemical alterations in cells, a key feature of the malignant progression of cancer is the stroma, including cancer cell motility as well as the emergence of metastases. Our current knowledge with regard to the biophysically driven experimental approaches of cancer progression indicates that mechanical aberrations are major contributors to the malignant progression of cancer. In particular, the mechanical probing of the stroma is of great interest. However, the impact of the tumor stroma on cellular motility, and hence the metastatic cascade leading to the malignant progression of cancer, is controversial as there are two different and opposing effects within the stroma. On the one hand, the stroma can promote and enhance the proliferation, survival and migration of cancer cells through mechanotransduction processes evoked by fiber alignment as a result of increased stroma rigidity. This enables all types of cancer to overcome restrictive biological capabilities. On the other hand, as a result of its structural constraints, the stroma acts as a steric obstacle for cancer cell motility in dense three-dimensional extracellular matrices, when the pore size is smaller than the cell's nucleus. The mechanical properties of the stroma, such as the tissue matrix stiffness and the entire architectural network of the stroma, are the major players in providing the optimal environment for cancer cell migration. Thus, biophysical methods determining the mechanical properties of the stroma, such as magnetic resonance elastography, are critical for the diagnosis and prediction of early cancer stages. Fibrogenesis and cancer are tightly connected, as there is an elevated risk of cancer on cystic fibrosis or, subsequently, cirrhosis. This also applies to the subsequent metastatic process.


Asunto(s)
Progresión de la Enfermedad , Neoplasias/patología , Animales , Movimiento Celular , Humanos , Metástasis de la Neoplasia , Neoplasias/irrigación sanguínea , Células del Estroma , Microambiente Tumoral
8.
J Phys Chem A ; 119(19): 4396-407, 2015 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-25470739

RESUMEN

Kinetic isotope effect (KIE) and reaction rate coefficients, k1-k4, for the gas-phase reaction of Cl atoms with (12)CH3D (k1), (12)CH2D2 (k2), (12)CHD3 (k3), and (12)CD4 (k4) over the temperature range 223-343 K in 630 Torr of synthetic air are reported. Rate coefficients were measured using a relative rate technique with (12)CH4 as the primary reference compound. Fourier transform infrared spectroscopy was used to monitor the methane isotopologue loss. The obtained KIE values were (12)CH3D: KIE1(T) = (1.227 ± 0.004) exp((43 ± 5)/T); (12)CH2D2: KIE2(T) = (1.14 ± 0.20) exp((191 ± 60)/T); (12)CHD3: KIE3(T) = (1.73 ± 0.34) exp((229 ± 60)/T); and (12)CD4: KIE4(T) = (1.01 ± 0.3) exp((724 ± 19)/T), where KIEx(T) = kCl+(12)CH4(T)/kx(T). The quoted uncertainties are at the 2σ (95% confidence) level and represent the precision of our data. The following Arrhenius expressions and 295 K rate coefficient values (in units of cm(3) molecule(-1) s(-1)) were derived from the above KIE using a rate coefficient of 7.3 × 10(-12) exp(-1280/T) cm(3) molecule(-1) s(-1) for the reaction of Cl with (12)CH4: k1(T) = (5.95 ± 0.70) × 10(-12) exp(-(1323 ± 50)/T), k1(295 K) = (6.7 ± 0.8) × 10(-14); k2(T) = (6.4 ± 1.3) × 10(-12) exp(-(1471 ± 60)/T), k2(295 K) = (4.4 ± 0.9) × 10(-14); k3(T) = (4.2 ± 1.0) × 10(-12) exp(-(1509 ± 60)/T), k3(295 K) = (2.53 ± 0.6) × 10(-14); and k4(T) = (7.13 ± 2.3) × 10(-12) exp(-(2000 ± 120)/T), k4(295 K) = (0.81 ± 0.26) × 10(-14). The reported uncertainties in the pre-exponential factors are 2σ and include estimated systematic errors in our measurements and the uncertainty in the reference reaction rate coefficient. The results from this study are compared with previously reported room-temperature rate coefficients for each of the deuterated methanes as well as the available temperature dependent data for the Cl atom reactions with CH3D and CD4. A two-dimensional atmospheric chemistry model was used to examine the implications of the present results to the atmospheric lifetime and vertical variation in the loss of the deuterated methane isotopologues. The relative contributions of the reactions of OH, Cl, and O((1)D) to the loss of the isotopologues in the stratosphere were also examined. The results of the calculations are described and discussed.

9.
APL Bioeng ; 8(2): 026110, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38721268

RESUMEN

Cells can adapt their active contractile properties to switch between dynamical migratory states and static homeostasis. Collective tissue surface tension, generated among others by the cortical contractility of single cells, can keep cell clusters compact, while a more bipolar, anisotropic contractility is predominantly used by mesenchymal cells to pull themselves into the extracellular matrix (ECM). Here, we investigate how these two contractility modes relate to cancer cell escape into the ECM. We compare multicellular spheroids from a panel of breast cancer cell lines with primary tumor explants from breast and cervical cancer patients by measuring matrix contraction and cellular spreading into ECM mimicking collagen matrices. Our results in spheroids suggest that tumor aggressiveness is associated with elevated contractile traction and reduced active tissue surface tension, allowing cancer cell escape. We show that it is not a binary switch but rather the interplay between these two contractility modes that is essential during this process. We provide further evidence in patient-derived tumor explants that these two contractility modes impact cancer cells' ability to leave cell clusters within a primary tumor. Our results indicate that cellular contractility is an essential factor during the formation of metastases and thus may be suitable as a prognostic criterion for the assessment of tumor aggressiveness.

10.
Biomater Adv ; 161: 213884, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38723432

RESUMEN

Prostate cancer (PCa) is a significant health problem in the male population of the Western world. Magnetic resonance elastography (MRE), an emerging medical imaging technique sensitive to mechanical properties of biological tissues, detects PCa based on abnormally high stiffness and viscosity values. Yet, the origin of these changes in tissue properties and how they correlate with histopathological markers and tumor aggressiveness are largely unknown, hindering the use of tumor biomechanical properties for establishing a noninvasive PCa staging system. To infer the contributions of extracellular matrix (ECM) components and cell motility, we investigated fresh tissue specimens from two PCa xenograft mouse models, PC3 and LNCaP, using magnetic resonance elastography (MRE), diffusion-weighted imaging (DWI), quantitative histology, and nuclear shape analysis. Increased tumor stiffness and impaired water diffusion were observed to be associated with collagen and elastin accumulation and decreased cell motility. Overall, LNCaP, while more representative of clinical PCa than PC3, accumulated fewer ECM components, induced less restriction of water diffusion, and exhibited increased cell motility, resulting in overall softer and less viscous properties. Taken together, our results suggest that prostate tumor stiffness increases with ECM accumulation and cell adhesion - characteristics that influence critical biological processes of cancer development. MRE paired with DWI provides a powerful set of imaging markers that can potentially predict prostate tumor development from benign masses to aggressive malignancies in patients. STATEMENT OF SIGNIFICANCE: Xenograft models of human prostate tumor cell lines, allowing correlation of microstructure-sensitive biophysical imaging parameters with quantitative histological methods, can be investigated to identify hallmarks of cancer.


Asunto(s)
Movimiento Celular , Diagnóstico por Imagen de Elasticidad , Matriz Extracelular , Neoplasias de la Próstata , Masculino , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/diagnóstico por imagen , Humanos , Matriz Extracelular/patología , Matriz Extracelular/metabolismo , Diagnóstico por Imagen de Elasticidad/métodos , Animales , Ratones , Línea Celular Tumoral , Imagen de Difusión por Resonancia Magnética/métodos
11.
Adv Sci (Weinh) ; 10(26): e2303523, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37553780

RESUMEN

Cancer progression is caused by genetic changes and associated with various alterations in cell properties, which also affect a tumor's mechanical state. While an increased stiffness has been well known for long for solid tumors, it has limited prognostic power. It is hypothesized that cancer progression is accompanied by tissue fluidization, where portions of the tissue can change position across different length scales. Supported by tabletop magnetic resonance elastography (MRE) on stroma mimicking collagen gels and microscopic analysis of live cells inside patient derived tumor explants, an overview is provided of how cancer associated mechanisms, including cellular unjamming, proliferation, microenvironment composition, and remodeling can alter a tissue's fluidity and stiffness. In vivo, state-of-the-art multifrequency MRE can distinguish tumors from their surrounding host tissue by their rheological fingerprints. Most importantly, a meta-analysis on the currently available clinical studies is conducted and universal trends are identified. The results and conclusions are condensed into a gedankenexperiment about how a tumor can grow and eventually metastasize into its environment from a physics perspective to deduce corresponding mechanical properties. Based on stiffness, fluidity, spatial heterogeneity, and texture of the tumor front a roadmap for a prognosis of a tumor's aggressiveness and metastatic potential is presented.


Asunto(s)
Neoplasias , Humanos , Colágeno , Pronóstico , Microambiente Tumoral
12.
J Biomed Opt ; 12(5): 051902, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17994885

RESUMEN

We present a novel methodology for combining breast image data obtained at different times, in different geometries, and by different techniques. We combine data based on diffuse optical tomography (DOT) and magnetic resonance imaging (MRI). The software platform integrates advanced multimodal registration and segmentation algorithms, requires minimal user experience, and employs computationally efficient techniques. The resulting superposed 3-D tomographs facilitate tissue analyses based on structural and functional data derived from both modalities, and readily permit enhancement of DOT data reconstruction using MRI-derived a-priori structural information. We demonstrate the multimodal registration method using a simulated phantom, and we present initial patient studies that confirm that tumorous regions in a patient breast found by both imaging modalities exhibit significantly higher total hemoglobin concentration (THC) than surrounding normal tissues. The average THC in the tumorous regions is one to three standard deviations larger than the overall breast average THC for all patients.


Asunto(s)
Neoplasias de la Mama/diagnóstico , Interpretación de Imagen Asistida por Computador/normas , Imagen por Resonancia Magnética/métodos , Imagen por Resonancia Magnética/normas , Técnica de Sustracción/normas , Tomografía Óptica/métodos , Tomografía Óptica/normas , Femenino , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Imagenología Tridimensional/normas , Estándares de Referencia , Programas Informáticos , Estados Unidos
14.
Med Image Anal ; 10(1): 96-112, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16150629

RESUMEN

The efficacy of radiation therapy treatment depends on the patient setup accuracy at each daily fraction. A significant problem is reproducing the patient position during treatment planning for every fraction of the treatment process. We propose and evaluate an intensity based automatic registration method using multiple portal images and the pre-treatment CT volume. We perform both geometric and radiometric calibrations to generate high quality digitally reconstructed radiographs (DRRs) that can be compared against portal images acquired right before treatment dose delivery. We use a graphics processing unit (GPU) to generate the DRRs in order to gain computational efficiency. We also perform a comparative study on various similarity measures and optimization procedures. Simple similarity measure such as local normalized correlation (LNC) performs best as long as the radiometric calibration is carefully done. Using the proposed method, we achieved better than 1mm average error in repositioning accuracy for a series of phantom studies using two open field (i.e., 41 cm2) portal images with 90 degrees vergence angle.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Postura , Planificación de la Radioterapia Asistida por Computador/métodos , Tomografía Computarizada por Rayos X , Algoritmos , Humanos , Fantasmas de Imagen , Reproducibilidad de los Resultados , Estadística como Asunto
15.
PLoS One ; 11(10): e0165344, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27768773

RESUMEN

An optochemokine tandem was developed to control the release of calcium from endosomes into the cytosol by light and to analyze the internalization kinetics of G-protein coupled receptors (GPCRs) by electrophysiology. A previously constructed rhodopsin tandem was re-engineered to combine the light-gated Ca2+-permeable cation channel Channelrhodopsin-2(L132C), CatCh, with the chemokine receptor CXCR4 in a functional tandem protein tCXCR4/CatCh. The GPCR was used as a shuttle protein to displace CatCh from the plasma membrane into intracellular areas. As shown by patch-clamp measurements and confocal laser scanning microscopy, heterologously expressed tCXCR4/CatCh was internalized via the endocytic SDF1/CXCR4 signaling pathway. The kinetics of internalization could be followed electrophysiologically via the amplitude of the CatCh signal. The light-induced release of Ca2+ by tandem endosomes into the cytosol via CatCh was visualized using the Ca2+-sensitive dyes rhod2 and rhod2-AM showing an increase of intracellular Ca2+ in response to light.


Asunto(s)
Calcio/metabolismo , Quimiocinas/metabolismo , Luz , Animales , Línea Celular Tumoral , Clatrina/metabolismo , Citosol/metabolismo , Endocitosis , Células HEK293 , Humanos , Ratones , Técnicas de Placa-Clamp , Ratas , Receptores CXCR4/metabolismo
16.
Acta Biomater ; 1(3): 263-71, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-16701805

RESUMEN

The measurement of the mechanical properties of individual cells has received much attention in recent years. In this paper we describe the application of optically induced forces with an optical stretcher to perform step-stress experiments on individual suspended fibroblasts. The conversion from creep-compliance to frequency-dependent complex shear modulus reveals characteristic viscoelastic signatures of the underlying cytoskeleton and its dynamic molecular properties. Both normal and cancerous fibroblasts display a single stress relaxation time in the observed time and frequency space that can be related to the transient binding of actin crosslinking proteins. In addition, shear modulus and steady-state viscosity of the shell-like actin cortex as the main module resisting small deformations are extracted. These values in combination with insight into the cells' architecture are used to explain their different deformability. This difference can then be exploited to distinguish normal from cancerous cells. The nature of the optical stretcher as an optical trap allows easy incorporation in a microfluidic system with automatic trapping and alignment of the cells, and thus a high measurement throughput. This carries the potential for using the microfluidic optical stretcher to investigate cellular processes involving the cytoskeleton and to diagnose diseases related to cytoskeletal alterations.


Asunto(s)
Células , Reología , Animales , Línea Celular , Ratones , Microfluídica
17.
Stud Health Technol Inform ; 98: 397-403, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15544314

RESUMEN

We report on a stereoscopic video-see-through augmented reality system which we developed for medical applications. Our system allows interactive in-situ visualization of 3D medical imaging data. For high-quality rendering of the augmented scene we utilize the capabilities of the latest graphics card generations. Fast high-precision MPR generation ("multiplanar reconstruction") and volume rendering is realized with OpenGL 3D textures. We provide a tracked hand-held tool to interact with the medical imaging data in its actual location. This tool is represented as a virtual tool in the space of the medical data. The user can assign different functionality to it: select arbitrary MPR cross-sections, guide a local volume rendered cube through the medical data, change the transfer function, etc. Tracking works in conjunction with retroreflective markers, which frame the workspace for head tracking respectively are attached to instruments for tool tracking. We use a single head-mounted tracking camera, which is rigidly fixed to the stereo pair of cameras that provide the live video view of the real scene. The user's spatial perception is based on stereo depth cues as well as on the kinetic depth cues that he receives with the viewpoint variations and the interactive data visualization. The AR system has a compelling real-time performance with 30 stereo-frames/second and exhibits no time lag between the video images and the augmenting graphics. Thus, the physician can interactively explore the medical imaging information in-situ.


Asunto(s)
Diagnóstico por Imagen , Interfaz Usuario-Computador , Ultrasonografía
18.
Stud Health Technol Inform ; 85: 455-60, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-15458132

RESUMEN

We have developed an augmented reality visualization system that helps the physician perform ultrasound guided needle biopsies. For a needle biopsy, the needle has to be inserted into an anatomical target to remove a tissue sample. Ultrasound guidance is routinely used e.g. for breast needle biopsies. The real-time ultrasound images allow the physician to locate the target and to monitor the needle position. Our system uses a combination of an optical laser guide and a virtual guide in the augmented image to provide intuitive guidance for the needle placement. There is no need to track the needle, i.e. there is no need to instrument the needle for tracking. In phantom tests, users have performed well with the system without prior training. This paper describes special features of our system and the workflow for the needle placement procedure.


Asunto(s)
Biopsia con Aguja/instrumentación , Simulación por Computador , Diagnóstico por Computador/instrumentación , Cirugía Asistida por Computador/instrumentación , Ultrasonografía/instrumentación , Interfaz Usuario-Computador , Mama/patología , Sistemas de Computación , Femenino , Humanos , Imagenología Tridimensional/instrumentación , Cómputos Matemáticos , Modelos Anatómicos , Transductores , Ultrasonografía Mamaria/instrumentación
19.
Stud Health Technol Inform ; 94: 151-7, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-15455881

RESUMEN

A navigation system can increase the speed and accuracy of MR guided interventions that make use of scanners with high-field closed magnets. We report on first needle placement experiments performed with an Augmented Reality (AR) navigation system. AR visualization provides very intuitive guidance, resulting in a faster procedure. The accuracy of the needle placement depends on the registration accuracy of the system. In the present trials, the needle was placed as good as 1mm close to the target center, however in a small number of cases substantially larger errors occurred and were most likely caused by needle bending.


Asunto(s)
Biopsia con Aguja/métodos , Simulación por Computador , Imagen por Resonancia Magnética/métodos , Interfaz Usuario-Computador , Humanos
20.
Biomed Res Int ; 2014: 108516, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24524072

RESUMEN

Malaria is a deadly infectious disease which affects millions of people each year in tropical regions. There is no effective vaccine available and the treatment is based on drugs which are currently facing an emergence of drug resistance and in this sense the search for new drug targets is indispensable. It is well established that vitamin biosynthetic pathways, such as the vitamin B6 de novo synthesis present in Plasmodium, are excellent drug targets. The active form of vitamin B6, pyridoxal 5-phosphate, is, besides its antioxidative properties, a cofactor for a variety of essential enzymes present in the malaria parasite which includes the ornithine decarboxylase (ODC, synthesis of polyamines), the aspartate aminotransferase (AspAT, involved in the protein biosynthesis), and the serine hydroxymethyltransferase (SHMT, a key enzyme within the folate metabolism).


Asunto(s)
Aspartato Aminotransferasas/metabolismo , Glicina Hidroximetiltransferasa/metabolismo , Malaria/enzimología , Ornitina Descarboxilasa/metabolismo , Animales , Antioxidantes/metabolismo , Aspartato Aminotransferasas/genética , Glicina Hidroximetiltransferasa/genética , Humanos , Malaria/genética , Malaria/parasitología , Ornitina Descarboxilasa/genética , Plasmodium falciparum/enzimología , Plasmodium falciparum/genética , Plasmodium falciparum/patogenicidad , Vitamina B 6/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda