Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Dokl Biochem Biophys ; 516(1): 111-114, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38795244

RESUMEN

Proton therapy can treat tumors located in radiation-sensitive tissues. This article demonstrates the possibility of enhancing the proton therapy with targeted gold nanoparticles that selectively recognize tumor cells. Au-PEG nanoparticles at concentrations above 25 mg/L and 4 Gy proton dose caused complete death of EMT6/P cells in vitro. Binary proton therapy using targeted Au-PEG-FA nanoparticles caused an 80% tumor growth inhibition effect in vivo. The use of targeted gold nanoparticles is promising for enhancing the proton irradiation effect on tumor cells and requires further research to increase the therapeutic index of the approach.


Asunto(s)
Carcinoma de Ehrlich , Oro , Nanopartículas del Metal , Terapia de Protones , Oro/química , Oro/farmacología , Nanopartículas del Metal/química , Nanopartículas del Metal/uso terapéutico , Terapia de Protones/métodos , Animales , Carcinoma de Ehrlich/radioterapia , Carcinoma de Ehrlich/tratamiento farmacológico , Carcinoma de Ehrlich/patología , Ratones , Línea Celular Tumoral , Polietilenglicoles/química
2.
Nanoscale ; 16(38): 17893-17907, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39253754

RESUMEN

Hafnium nitride nanoparticles (HfN NPs) can offer appealing plasmonic properties at the nanoscale, but the fabrication of stable water-dispersible solutions of non-toxic HfN NPs exhibiting plasmonic features in the window of relative biological transparency presents a great challenge. Here, we demonstrate a solution to this problem by employing ultrashort (femtosecond) laser ablation from a HfN target in organic solutions, followed by a coating of the formed NPs with polyethylene glycol (PEG) and subsequent dispersion in water. We show that the fabricated NPs exhibit plasmonic absorption bands with maxima around 590 nm, 620 nm, and 650 nm, depending on the synthesis environment (ethanol, acetone, and acetonitrile, respectively), which are largely red-shifted compared to what is expected from pure HfN NPs. The observed shift is explained by including nitrogen-deficient hafnium nitride and hafnium oxynitride phases inside the core and oxynitride coating of NPs, as follows from a series of structural characterization studies. We then show that the NPs can provide a strong photothermal effect under 808 nm excitation with a photothermal conversion coefficient of about 62%, which is comparable to the best values reported for plasmonic NPs. MTT and clonogenic assays evidenced very low cytotoxicity of PEG-coated HfN NPs to cancer cells from different tissues up to 100 µg mL-1 concentrations. We finally report a strong photothermal therapeutic effect of HfN NPs, as shown by 100% cell death under 808 nm light irradiation at NP concentrations lower than 25 µg mL-1. Combined with additional X-ray theranostic functionalities (CT scan and photon capture therapy) profiting from the high atomic number (Z = 72) of Hf, plasmonic HfN NPs promise the development of synergetically enhanced modalities for cancer treatment.


Asunto(s)
Hafnio , Rayos Láser , Nanopartículas , Terapia Fototérmica , Polietilenglicoles , Humanos , Nanopartículas/química , Nanopartículas/uso terapéutico , Polietilenglicoles/química , Hafnio/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda