Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Clin Infect Dis ; 77(Suppl 2): S134-S144, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37490742

RESUMEN

BACKGROUND: Low- and middle-income countries face significant challenges in differentiating bacterial from viral causes of febrile illnesses, leading to inappropriate use of antibiotics. This trial aimed to evaluate the impact of an intervention package comprising diagnostic tests, a diagnostic algorithm, and a training-and-communication package on antibiotic prescriptions and clinical outcomes. METHODS: Patients aged 6 months to 18 years with fever or history of fever within the past 7 days with no focus, or a suspected respiratory tract infection, arriving at 2 health facilities were randomized to either the intervention package or standard practice. The primary outcomes were the proportions of patients who recovered at day 7 (D7) and patients prescribed antibiotics at day 0. RESULTS: Of 1718 patients randomized, 1681 (97.8%; intervention: 844; control: 837) completed follow-up: 99.5% recovered at D7 in the intervention arm versus 100% in standard practice (P = .135). Antibiotics were prescribed to 40.6% of patients in the intervention group versus 57.5% in the control arm (risk ratio: 29.3%; 95% CI: 21.8-36.0%; risk difference [RD]: -16.8%; 95% CI: -21.7% to -12.0%; P < .001), which translates to 1 additional antibiotic prescription saved every 6 (95% CI: 5-8) consultations. This reduction was significant regardless of test results for malaria, but was greater in patients without malaria (RD: -46.0%; -54.7% to -37.4%; P < .001), those with a respiratory diagnosis (RD: -38.2%; -43.8% to -32.6%; P < .001), and in children 6-59 months old (RD: -20.4%; -26.0% to -14.9%; P < .001). Except for the period July-September, the reduction was consistent across the other quarters (P < .001). CONCLUSIONS: The implementation of the package can reduce inappropriate antibiotic prescription without compromising clinical outcomes. CLINICAL TRIALS REGISTRATION: clinicaltrials.gov; NCT04081051.


Asunto(s)
Antibacterianos , Malaria , Humanos , Niño , Adolescente , Lactante , Preescolar , Burkina Faso , Antibacterianos/uso terapéutico , Prescripciones , Malaria/tratamiento farmacológico , Instituciones de Salud , Algoritmos
2.
Lancet ; 397(10287): 1809-1818, 2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-33964223

RESUMEN

BACKGROUND: Stalled progress in controlling Plasmodium falciparum malaria highlights the need for an effective and deployable vaccine. RTS,S/AS01, the most effective malaria vaccine candidate to date, demonstrated 56% efficacy over 12 months in African children. We therefore assessed a new candidate vaccine for safety and efficacy. METHODS: In this double-blind, randomised, controlled, phase 2b trial, the low-dose circumsporozoite protein-based vaccine R21, with two different doses of adjuvant Matrix-M (MM), was given to children aged 5-17 months in Nanoro, Burkina Faso-a highly seasonal malaria transmission setting. Three vaccinations were administered at 4-week intervals before the malaria season, with a fourth dose 1 year later. All vaccines were administered intramuscularly into the thigh. Group 1 received 5 µg R21 plus 25 µg MM, group 2 received 5 µg R21 plus 50 µg MM, and group 3, the control group, received rabies vaccinations. Children were randomly assigned (1:1:1) to groups 1-3. An independent statistician generated a random allocation list, using block randomisation with variable block sizes, which was used to assign participants. Participants, their families, and the local study team were all masked to group allocation. Only the pharmacists preparing the vaccine were unmasked to group allocation. Vaccine safety, immunogenicity, and efficacy were evaluated over 1 year. The primary objective assessed protective efficacy of R21 plus MM (R21/MM) from 14 days after the third vaccination to 6 months. Primary analyses of vaccine efficacy were based on a modified intention-to-treat population, which included all participants who received three vaccinations, allowing for inclusion of participants who received the wrong vaccine at any timepoint. This trial is registered with ClinicalTrials.gov, NCT03896724. FINDINGS: From May 7 to June 13, 2019, 498 children aged 5-17 months were screened, and 48 were excluded. 450 children were enrolled and received at least one vaccination. 150 children were allocated to group 1, 150 children were allocated to group 2, and 150 children were allocated to group 3. The final vaccination of the primary series was administered on Aug 7, 2019. R21/MM had a favourable safety profile and was well tolerated. The majority of adverse events were mild, with the most common event being fever. None of the seven serious adverse events were attributed to the vaccine. At the 6-month primary efficacy analysis, 43 (29%) of 146 participants in group 1, 38 (26%) of 146 participants in group 2, and 105 (71%) of 147 participants in group 3 developed clinical malaria. Vaccine efficacy was 74% (95% CI 63-82) in group 1 and 77% (67-84) in group 2 at 6 months. At 1 year, vaccine efficacy remained high, at 77% (67-84) in group 1. Participants vaccinated with R21/MM showed high titres of malaria-specific anti-Asn-Ala-Asn-Pro (NANP) antibodies 28 days after the third vaccination, which were almost doubled with the higher adjuvant dose. Titres waned but were boosted to levels similar to peak titres after the primary series of vaccinations after a fourth dose administered 1 year later. INTERPRETATION: R21/MM appears safe and very immunogenic in African children, and shows promising high-level efficacy. FUNDING: The European & Developing Countries Clinical Trials Partnership, Wellcome Trust, and National Institute for Health Research Oxford Biomedical Research Centre.


Asunto(s)
Anticuerpos Antiprotozoarios/inmunología , Inmunogenicidad Vacunal , Vacunas contra la Malaria/uso terapéutico , Malaria/prevención & control , Proteínas Protozoarias/inmunología , Vacunas de Partículas Similares a Virus/uso terapéutico , Adyuvantes Inmunológicos/administración & dosificación , Burkina Faso , Método Doble Ciego , Femenino , Antígenos de Superficie de la Hepatitis B , Humanos , Lactante , Malaria Falciparum/prevención & control , Masculino , Nanopartículas/administración & dosificación , Modelos de Riesgos Proporcionales , Saponinas/administración & dosificación , Resultado del Tratamiento
3.
Pilot Feasibility Stud ; 8(1): 221, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36183100

RESUMEN

BACKGROUND: Malaria infection during pregnancy (MIP) is not only deleterious to the woman, but it also puts her fetus at increased risk of adverse outcomes, such as preterm delivery, low birth weight, and intrauterine growth retardation. Additionally, all-cause mortality during the first year of life in babies born to women with malaria during pregnancy is also increased. Many interventions such as IPTp-SP and long-lasting insecticidal nets have proven to be efficient at reducing malaria in pregnancy burden but adherence to recommended policies remains poor. In sub-Saharan Africa, malaria in pregnancy is often asymptomatic and many malaria infections may be missed due to the inadequate performance of the current rapid diagnostic test to detect low-level parasitemias. Therefore, additional strategies such as intermittent screening with ultrasensitive rapid diagnostic tests and treatment with an effective artemisinin-based combination therapy in addition to IPTp-SP could reduce placental malaria, peripheral malaria infection at delivery, and low birth weight. METHODS: This pilot 2-group randomized open trial with a nested qualitative social behavioral will be carried out in Nanoro district in which 340 pregnant women will be recruited. Pregnant women will be randomized into two groups and followed on a monthly basis until delivery. In the intervention group, monthly screening using ultrasensitive rapid diagnostic tests and treatment of those found to be infected with dihydroartemisinin-piperaquine will be performed. In addition, a reminder will be sent to increase the uptake of IPTp-SP doses per woman. During scheduled and unscheduled visits, malaria infection, hemoglobin level, and other clinical outcomes will be assessed and compared by the group. The primary feasibility outcome will evaluate the study site's capacity to enroll participants and the women's perception and acceptability of the intervention. The primary clinical outcome will be the prevalence of placental malaria at delivery. DISCUSSION: The present protocol aims to evaluate the feasibility on a large-scale and also to demonstrate the impact and the operational feasibility of additional screening with ultrasensitive rapid diagnostic tests and treatment with DHA-PQ on placental malaria, low birth weight, and peripheral malaria infection at delivery in a high-burden setting in Burkina Faso. TRIAL REGISTRATION: ClinicalTrials.gov , ID: NCT04147546 (14 October 2019).

4.
Trials ; 23(1): 779, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36109766

RESUMEN

BACKGROUND: In Sub-Saharan Africa (SSA), febrile illnesses remain a major public health problem in children. However, the persistence of hrp2 antigen and the low sensitivity of pLDH RDT negatively affect antimalarials and antibiotics prescription practices. These limitations lead to poor management of febrile diseases and antimicrobial resistance (AMR). To improve the diagnosis of these febrile diseases and subsequent prescription of antimicrobials, it is hypothesized that the implementation of an algorithm including a two-step malaria RDT PfHRP2/pLDH supported by point-of-care (PoC) tests for bacterial infections could significantly improve the management of febrile diseases and thereby tackling AMR. METHODS: To assess the value of the proposed algorithm, an open-label randomized controlled trial with three arms, enrolling febrile children from 6 to 59 months is proposed. In the control arm, febrile children will be managed according to the Integrated Management of Childhood Illnesses (IMCI), which is part of the standard of care in Burkina Faso. Treatment will be done according to national guidelines. In the RDT decisional algorithm (RDT-DA) arm (intervention), the clinical examination based on IMIC will be supported by a two-step malaria RDT and bacterial infections RDTs. Prescription will be left to the discretion of the healthcare workers based on clinical examination and PoC test results. In the e-algorithm arm (intervention), artificial intelligence integrating multiple layers of clinical information such as clinical examination, signs/symptoms and medical history, and biological information such as biomarkers (CRP and WBC) and pathogen-specific PoC tests, and oximetry will be developed. The e-algorithm will serve to guide the diagnostic and management of febrile infections in children. In the 3 arms, the case report forms will be digitalized. A final follow-up visit (day 7) will be scheduled for all participants. Patients will be asked to come back to the health facilities before the scheduled visit if the symptoms persist or in case of health condition worsening. DISCUSSION: If successful, this study could contribute to improve the management of febrile diseases and reduce inappropriate use of antimicrobials. TRIAL REGISTRATION: The trial is registered at ClinicalTrial.gov, NCT05285657. Enrolment started on 4 March 2022 with long-term outcome being assessed completely by 2023.


Asunto(s)
Antimaláricos , Malaria Falciparum , Malaria , Algoritmos , Antibacterianos/uso terapéutico , Antimaláricos/uso terapéutico , Inteligencia Artificial , Burkina Faso , Preescolar , Electrónica , Fiebre/diagnóstico , Fiebre/tratamiento farmacológico , Humanos , Lactante , Malaria/diagnóstico , Malaria/tratamiento farmacológico , Malaria Falciparum/diagnóstico , Pacientes Ambulatorios
5.
Lancet Infect Dis ; 22(12): 1728-1736, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36087586

RESUMEN

BACKGROUND: Malaria is a leading cause of morbidity and mortality worldwide. We previously reported the efficacy of the R21/Matrix-M malaria vaccine, which reached the WHO-specified goal of 75% or greater efficacy over 12 months in the target population of African children. Here, we report the safety, immunogenicity, and efficacy results at 12 months following administration of a booster vaccination. METHODS: This double-blind phase 1/2b randomised controlled trial was done in children aged 5-17 months in Nanoro, Burkina Faso. Eligible children were enrolled and randomly assigned (1:1:1) to receive three vaccinations of either 5 µg R21/25 µg Matrix-M, 5 µg R21/50 µg Matrix-M, or a control vaccine (the Rabivax-S rabies vaccine) before the malaria season, with a booster dose 12 months later. Children were eligible for inclusion if written informed consent could be provided by a parent or guardian. Exclusion criteria included any existing clinically significant comorbidity or receipt of other investigational products. A random allocation list was generated by an independent statistician by use of block randomisation with variable block sizes. A research assistant from the University of Oxford, independent of the trial team, prepared sealed envelopes using this list, which was then provided to the study pharmacists to assign participants. All vaccines were prepared by the study pharmacists by use of the same type of syringe, and the contents were covered with an opaque label. Vaccine safety, efficacy, and a potential correlate of efficacy with immunogenicity, measured as anti-NANP antibody titres, were evaluated over 1 year following the first booster vaccination. The population in which the efficacy analyses were done comprised all participants who received the primary series of vaccinations and a booster vaccination. Participants were excluded from the efficacy analysis if they withdrew from the trial within the first 2 weeks of receiving the booster vaccine. This trial is registered with ClinicalTrials.gov (NCT03896724), and is continuing for a further 2 years to assess both the potential value of additional booster vaccine doses and longer-term safety. FINDINGS: Between June 2, and July 2, 2020, 409 children returned to receive a booster vaccine. Each child received the same vaccination for the booster as they received in the primary series of vaccinations; 132 participants received 5 µg R21 adjuvanted with 25 µg Matrix-M, 137 received 5 µg R21 adjuvanted with 50 µg Matrix-M, and 140 received the control vaccine. R21/Matrix-M had a favourable safety profile and was well tolerated. Vaccine efficacy remained high in the high adjuvant dose (50 µg) group, similar to previous findings at 1 year after the primary series of vaccinations. Following the booster vaccination, 67 (51%) of 132 children who received R21/Matrix-M with low-dose adjuvant, 54 (39%) of 137 children who received R21/Matrix-M with high-dose adjuvant, and 121 (86%) of 140 children who received the rabies vaccine developed clinical malaria by 12 months. Vaccine efficacy was 71% (95% CI 60 to 78) in the low-dose adjuvant group and 80% (72 to 85) in the high-dose adjuvant group. In the high-dose adjuvant group, vaccine efficacy against multiple episodes of malaria was 78% (95% CI 71 to 83), and 2285 (95% CI 1911 to 2568) cases of malaria were averted per 1000 child-years at risk among vaccinated children in the second year of follow-up. Among these participants, at 28 days following their last R21/Matrix-M vaccination, titres of malaria-specific anti-NANP antibodies correlated positively with protection against malaria in both the first year of follow-up (Spearman's ρ -0·32 [95% CI -0·45 to -0·19]; p=0·0001) and second year of follow-up (-0·20 [-0·34 to -0·06]; p=0·02). INTERPRETATION: A booster dose of R21/Matrix-M at 1 year following the primary three-dose regimen maintained high efficacy against first and multiple episodes of clinical malaria. Furthermore, the booster vaccine induced antibody concentrations that correlated with vaccine efficacy. The trial is ongoing to assess long-term follow-up of these participants and the value of further booster vaccinations. FUNDING: European and Developing Countries Clinical Trials Partnership 2 (EDCTP2), Wellcome Trust, and NIHR Oxford Biomedical Research Centre. TRANSLATION: For the French translation of the abstract see Supplementary Materials section.


Asunto(s)
Malaria , Vacunas Antirrábicas , Humanos , Burkina Faso , Estudios de Seguimiento , Método Doble Ciego , Adyuvantes Inmunológicos , Inmunogenicidad Vacunal
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda