Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Arch Gynecol Obstet ; 306(6): 2115-2122, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35467121

RESUMEN

PURPOSE: Metabolites are in the spotlight of attention as promising novel breast cancer biomarkers. However, no study has been conducted concerning changes in the metabolomics profile of metastatic breast cancer patients according to previous therapy. METHODS: We performed a retrospective, single-center, nonrandomized, partially blinded, treatment-based study. Metastatic breast cancer (MBC) patients were enrolled between 03/2010 and 09/2016 at the beginning of a new systemic therapy. The endogenous metabolites in the plasma samples were analyzed using the AbsoluteIDQ® p180 Kit (Biocrates Life Sciences AG, Innsbruck) a targeted, quality and quantitative-controlled metabolomics approach. The statistical analysis was performed using R package, version 3.3.1. ANOVA was used to statistically assess age differences within groups. Furthermore, we analyzed the CTC status of the patients using the CellSearch™ assay. RESULTS: We included 178 patients in our study. Upon dividing the study population according to therapy before study inclusion, we found the following: 4 patients had received no therapy, 165 chemotherapy, and 135 anti-hormonal therapy, 30 with anti-Her2 therapy and 38 had received treatment with bevacizumab. Two metabolites were found to be significantly different, depending on the further therapy of the patients: methionine and serine. Whereas methionine levels were higher in the blood of patients who received an anti-Her2-therapy, serine was lower in patients with endocrine therapy only. CONCLUSION: We identified two metabolites for which concentrations differed significantly depending on previous therapies, which could help to choose the next therapy in patients who have already received numerous different treatments.


Asunto(s)
Neoplasias de la Mama , Células Neoplásicas Circulantes , Humanos , Femenino , Neoplasias de la Mama/patología , Biomarcadores de Tumor/metabolismo , Células Neoplásicas Circulantes/patología , Estudios Retrospectivos , Receptor ErbB-2/metabolismo , Serina/uso terapéutico , Metionina/uso terapéutico
2.
Int J Cancer ; 144(11): 2833-2842, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30426507

RESUMEN

In recent years, metabolites have attracted substantial attention as promising novel biomarkers of various diseases. However, breast cancer plasma metabolite studies are still in their infancy. Here, we investigated the potential of metabolites to serve as minimally invasive, early detection markers of primary breast cancer. We profiled metabolites extracted from the plasma of primary breast cancer patients and healthy controls using tandem mass spectrometry (UHPLC-MS/MS and FIA-MS/MS). Two metabolites were found to be upregulated, while 16 metabolites were downregulated in primary breast cancer patients compared to healthy controls in both the training and validation cohorts. A panel of seven metabolites was selected by LASSO regression analysis. This panel could differentiate primary breast cancer patients from healthy controls, with an AUC of 0.87 (95% CI: 0.81 ~ 0.92) in the training cohort and an AUC of 0.80 (95% CI: 0.71 ~ 0.87) in the validation cohort. These significantly differentiated metabolites are mainly involved in the amino acid metabolism and breast cancer cell growth pathways. In conclusion, using a metabolomics approach, we identified metabolites that have potential value for development of a multimarker blood-based test to complement and improve early breast cancer detection. The panel identified herein might be part of a prescreening tool, especially for younger women or for closely observing women with certain risks, to facilitate decision making regarding which individuals should undergo further diagnostic tests. In the future, the combination of metabolites and other blood-based molecular marker sets, such as DNA methylation, microRNA, and cell-free DNA mutation markers, will be an attractive option.


Asunto(s)
Biomarcadores de Tumor/sangre , Neoplasias de la Mama/diagnóstico , Detección Precoz del Cáncer/métodos , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/sangre , Neoplasias de la Mama/metabolismo , Estudios de Cohortes , Femenino , Humanos , Metabolómica/métodos , Persona de Mediana Edad , Curva ROC
3.
RNA ; 23(2): 142-152, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27872161

RESUMEN

In chronic kidney disease (CKD), the decline in the glomerular filtration rate is associated with increased morbidity and mortality and thus poses a major challenge for healthcare systems. While the contribution of tissue-derived miRNAs and mRNAs to CKD progression has been extensively studied, little is known about the role of urinary exosomes and their association with CKD. Exosomes are small, membrane-derived endocytic vesicles that contribute to cell-to-cell communication and are present in various body fluids, such as blood or urine. Next-generation sequencing approaches have revealed that exosomes are enriched in noncoding RNAs and thus exhibit great potential for sensitive nucleic acid biomarkers in various human diseases. Therefore, in this study we aimed to identify urinary exosomal ncRNAs as novel biomarkers for diagnosis of CKD. Since up to now most approaches have focused on the class of miRNAs, we extended our analysis to several other noncoding RNA classes, such as tRNAs, tRNA fragments (tRFs), mitochondrial tRNAs, or lincRNAs. For their computational identification from RNA-seq data, we developed a novel computational pipeline, designated as ncRNASeqScan. By these analyses, in CKD patients we identified 30 differentially expressed ncRNAs, derived from urinary exosomes, as suitable biomarkers for early diagnosis. Thereby, miRNA-181a appeared as the most robust and stable potential biomarker, being significantly decreased by about 200-fold in exosomes of CKD patients compared to healthy controls. Using a cell culture system for CKD indicated that urinary exosomes might indeed originate from renal proximal tubular epithelial cells.


Asunto(s)
Células Epiteliales/metabolismo , Exosomas/química , Túbulos Renales Proximales/metabolismo , MicroARNs/orina , Insuficiencia Renal Crónica/diagnóstico , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores/orina , Estudios de Casos y Controles , Diagnóstico Precoz , Células Epiteliales/patología , Exosomas/metabolismo , Femenino , Tasa de Filtración Glomerular , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Túbulos Renales Proximales/patología , Masculino , Persona de Mediana Edad , Anotación de Secuencia Molecular , ARN/orina , ARN Largo no Codificante/orina , ARN Mitocondrial , ARN de Transferencia/orina , Insuficiencia Renal Crónica/patología , Insuficiencia Renal Crónica/orina , Análisis de Secuencia de ARN , Índice de Severidad de la Enfermedad
4.
Alzheimers Dement ; 15(1): 76-92, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30337151

RESUMEN

INTRODUCTION: Increasing evidence suggests a role for the gut microbiome in central nervous system disorders and a specific role for the gut-brain axis in neurodegeneration. Bile acids (BAs), products of cholesterol metabolism and clearance, are produced in the liver and are further metabolized by gut bacteria. They have major regulatory and signaling functions and seem dysregulated in Alzheimer's disease (AD). METHODS: Serum levels of 15 primary and secondary BAs and their conjugated forms were measured in 1464 subjects including 370 cognitively normal older adults, 284 with early mild cognitive impairment, 505 with late mild cognitive impairment, and 305 AD cases enrolled in the AD Neuroimaging Initiative. We assessed associations of BA profiles including selected ratios with diagnosis, cognition, and AD-related genetic variants, adjusting for confounders and multiple testing. RESULTS: In AD compared to cognitively normal older adults, we observed significantly lower serum concentrations of a primary BA (cholic acid [CA]) and increased levels of the bacterially produced, secondary BA, deoxycholic acid, and its glycine and taurine conjugated forms. An increased ratio of deoxycholic acid:CA, which reflects 7α-dehydroxylation of CA by gut bacteria, strongly associated with cognitive decline, a finding replicated in serum and brain samples in the Rush Religious Orders and Memory and Aging Project. Several genetic variants in immune response-related genes implicated in AD showed associations with BA profiles. DISCUSSION: We report for the first time an association between altered BA profile, genetic variants implicated in AD, and cognitive changes in disease using a large multicenter study. These findings warrant further investigation of gut dysbiosis and possible role of gut-liver-brain axis in the pathogenesis of AD.


Asunto(s)
Enfermedad de Alzheimer , Ácidos y Sales Biliares/metabolismo , Disfunción Cognitiva/metabolismo , Microbioma Gastrointestinal , Anciano , Enfermedad de Alzheimer/microbiología , Enfermedad de Alzheimer/fisiopatología , Ácidos y Sales Biliares/sangre , Disbiosis , Femenino , Humanos , Hígado/metabolismo , Masculino , Metaboloma
5.
Clin Lab ; 64(10): 1695-1700, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-30336519

RESUMEN

BACKGROUND: The adrenocorticotropic hormone (ACTH) stimulation test is a widely used diagnostic tool to assess the adrenal gland function. Beyond that the ACTH test can be used in stress research to induce a biochemical stress response under standardized conditions. To study the impact of the stress response on protein metabolism, time-course plasma amino acid profiling in healthy individuals was performed with high performance liquid chromatography tandem-mass spectrometry (HPLC-MS/MS). METHODS: A set of 39 samples (pre/post 30´ and 60´ IV-ACTH) from 13 healthy individuals (age range 26 - 58, 3 female and 10 male) was investigated. Plasma amino acids were quantified by LC-MS/MS using the AbsoluteIDQ® p180 Kit (Biocrates Life Science, Innsbruck, Austria) including 19 biogenic amino acids, ornithine, and citrulline. RESULTS: Statistically significant decreases were observed for 11 proteinogenic amino acids (alanine, asparagine, isoleucine, leucine, tyrosine, phenylalanine, tryptophan, valine, methionine, aspartate, and threonine). The amino acids alanine, asparagine, and isoleucine showed markedly pronounced relative changes with short-term reduction of median inter-individual plasma concentrations of up to 25%. CONCLUSIONS: Amino acid profiling with LC-MS/MS revealed highly dynamic plasma alterations upon application of exogenous corticotropin as a stress model. Our findings provide novel insights into the biochemical stress response and improve our understanding of short-term metabolic consequences. Further studies should elucidate the impact of corticotropin mediated stress responses on amino acid catabolism.


Asunto(s)
Hormona Adrenocorticotrópica/administración & dosificación , Aminoácidos/metabolismo , Metaboloma/efectos de los fármacos , Metabolómica , Adulto , Aminoácidos/sangre , Cromatografía Liquida , Femenino , Humanos , Masculino , Persona de Mediana Edad , Espectrometría de Masas en Tándem , Factores de Tiempo
6.
RNA ; 20(12): 1929-43, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25344396

RESUMEN

We have generated a novel, neuro-specific ncRNA microarray, covering 1472 ncRNA species, to investigate their expression in different mouse models for central nervous system diseases. Thereby, we analyzed ncRNA expression in two mouse models with impaired calcium channel activity, implicated in Epilepsy or Parkinson's disease, respectively, as well as in a mouse model mimicking pathophysiological aspects of Alzheimer's disease. We identified well over a hundred differentially expressed ncRNAs, either from known classes of ncRNAs, such as miRNAs or snoRNAs or which represented entirely novel ncRNA species. Several differentially expressed ncRNAs in the calcium channel mouse models were assigned as miRNAs and target genes involved in calcium signaling, thus suggesting feedback regulation of miRNAs by calcium signaling. In the Alzheimer mouse model, we identified two snoRNAs, whose expression was deregulated prior to amyloid plaque formation. Interestingly, the presence of snoRNAs could be detected in cerebral spine fluid samples in humans, thus potentially serving as early diagnostic markers for Alzheimer's disease. In addition to known ncRNAs species, we also identified 63 differentially expressed, entirely novel ncRNA candidates, located in intronic or intergenic regions of the mouse genome, genomic locations, which previously have been shown to harbor the majority of functional ncRNAs.


Asunto(s)
Enfermedad de Alzheimer/genética , Epilepsia/genética , MicroARNs/biosíntesis , Enfermedad de Parkinson/genética , ARN no Traducido/biosíntesis , Enfermedad de Alzheimer/patología , Animales , Canales de Calcio/genética , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Modelos Animales de Enfermedad , Epilepsia/patología , Regulación de la Expresión Génica , Genoma , Humanos , Ratones , MicroARNs/genética , Especificidad de Órganos , Enfermedad de Parkinson/patología , ARN no Traducido/genética , Análisis de Matrices Tisulares
7.
Nucleic Acids Res ; 40(13): 6001-15, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22492625

RESUMEN

Protein-coding genes, guiding differentiation of ES cells into neural cells, have extensively been studied in the past. However, for the class of ncRNAs only the involvement of some specific microRNAs (miRNAs) has been described. Thus, to characterize the entire small non-coding RNA (ncRNA) transcriptome, involved in the differentiation of mouse ES cells into neural cells, we have generated three specialized ribonucleo-protein particle (RNP)-derived cDNA libraries, i.e. from pluripotent ES cells, neural progenitors and differentiated neural cells, respectively. By high-throughput sequencing and transcriptional profiling we identified several novel miRNAs to be involved in ES cell differentiation, as well as seven small nucleolar RNAs. In addition, expression of 7SL, 7SK and vault-2 RNAs was significantly up-regulated during ES cell differentiation. About half of ncRNA sequences from the three cDNA libraries mapped to intergenic or intragenic regions, designated as interRNAs and intraRNAs, respectively. Thereby, novel ncRNA candidates exhibited a predominant size of 18-30 nt, thus resembling miRNA species, but, with few exceptions, lacking canonical miRNA features. Additionally, these novel intraRNAs and interRNAs were not only found to be differentially expressed in stem-cell derivatives, but also in primary cultures of hippocampal neurons and astrocytes, strengthening their potential function in neural ES cell differentiation.


Asunto(s)
Diferenciación Celular/genética , Células Madre Embrionarias/metabolismo , Células-Madre Neurales/metabolismo , ARN no Traducido/metabolismo , Animales , Astrocitos/metabolismo , Línea Celular , Células Cultivadas , Células Madre Embrionarias/citología , Perfilación de la Expresión Génica , Biblioteca de Genes , Hipocampo/citología , Hipocampo/metabolismo , Ratones , MicroARNs/metabolismo , Células-Madre Neurales/citología , Neuronas/metabolismo , ARN no Traducido/química , Ribonucleoproteínas/metabolismo
8.
Biol Psychiatry ; 81(12): 979-989, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28104225

RESUMEN

BACKGROUND: MicroRNA (miRNA)-mediated control of gene expression suggests that miRNAs are interesting targets and/or biomarkers in the treatment of anxiety- and trauma-related disorders, where often memory-associated gene expression is adversely affected. METHODS: The role of miRNAs in the rescue of impaired fear extinction was assessed using the 129S1/SvlmJ (S1) mouse model of impaired fear extinction. miRNA microarray analysis, reverse transcription polymerase chain reaction, fluorescent in situ hybridization, lentiviral overexpression, and Luciferase reporter assays were used to gain insight into the mechanisms underlying miRNA-mediated normalization of deficient fear extinction. RESULTS: Rescuing impaired fear extinction via dietary zinc restriction was associated with differential expression of miRNAs in the amygdala. One candidate, miR-144-3p, robustly expressed in the basolateral amygdala, showed specific extinction-induced, but not fear-induced, increased expression in both extinction-rescued S1 mice and extinction-intact C57BL/6 (BL6) mice. miR-144-3p upregulation and effects on subsequent behavioral adaption was assessed in S1 and BL6 mice. miR-144-3p overexpression in the basolateral amygdala rescued impaired fear extinction in S1 mice, led to enhanced fear extinction acquisition in BL6 mice, and furthermore protected against fear renewal in BL6 mice. miR-144-3p targets a number of genes implicated in the control of plasticity-associated signaling cascades, including Pten, Spred1, and Notch1. In functional interaction studies, we revealed that the miR-144-3p target, PTEN, colocalized with miR-144-3p in the basolateral amygdala and showed functional downregulation following successful fear extinction in S1 mice. CONCLUSIONS: These findings identify a fundamental role of miR-144-3p in the rescue of impaired fear extinction and suggest this miRNA as a viable target in developing novel treatments for posttraumatic stress disorder and related disorders.


Asunto(s)
Extinción Psicológica/fisiología , Miedo , Memoria/fisiología , MicroARNs/fisiología , Amígdala del Cerebelo/metabolismo , Animales , Regulación hacia Abajo , Masculino , Ratones , MicroARNs/genética , Fosfohidrolasa PTEN/biosíntesis , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/fisiología , Transducción de Señal/fisiología , Regulación hacia Arriba , Zinc/deficiencia
9.
PLoS One ; 11(3): e0150705, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26962858

RESUMEN

Multiple system atrophy (MSA) is a fatal rapidly progressive α-synucleinopathy, characterized by α-synuclein accumulation in oligodendrocytes. It is accepted that the pathological α-synuclein accumulation in the brain of MSA patients plays a leading role in the disease process, but little is known about the events in the early stages of the disease. In this study we aimed to define potential roles of the miRNA-mRNA regulatory network in the early pre-motor stages of the disease, i.e., downstream of α-synuclein accumulation in oligodendroglia, as assessed in a transgenic mouse model of MSA. We investigated the expression patterns of miRNAs and their mRNA targets in substantia nigra (SN) and striatum, two brain regions that undergo neurodegeneration at a later stage in the MSA model, by microarray and RNA-seq analysis, respectively. Analysis was performed at a time point when α-synuclein accumulation was already present in oligodendrocytes at neuropathological examination, but no neuronal loss nor deficits of motor function had yet occurred. Our data provide a first evidence for the leading role of gene dysregulation associated with deficits in immune and inflammatory responses in the very early, non-symptomatic disease stages of MSA. While dysfunctional homeostasis and oxidative stress were prominent in SN in the early stages of MSA, in striatum differential gene expression in the non-symptomatic phase was linked to oligodendroglial dysfunction, disturbed protein handling, lipid metabolism, transmembrane transport and altered cell death control, respectively. A large number of putative miRNA-mRNAs interaction partners were identified in relation to the control of these processes in the MSA model. Our results support the role of early changes in the miRNA-mRNA regulatory network in the pathogenesis of MSA preceding the clinical onset of the disease. The findings thus contribute to understanding the disease process and are likely to pave the way towards identifying disease biomarkers for early diagnosis of MSA.


Asunto(s)
Cuerpo Estriado/metabolismo , MicroARNs/metabolismo , Atrofia de Múltiples Sistemas/metabolismo , Oligodendroglía/metabolismo , ARN Mensajero/metabolismo , alfa-Sinucleína/biosíntesis , Animales , Cuerpo Estriado/patología , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Transgénicos , MicroARNs/genética , Atrofia de Múltiples Sistemas/genética , Oligodendroglía/patología , ARN Mensajero/genética , alfa-Sinucleína/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda