Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
Sci Rep ; 14(1): 5575, 2024 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448481

RESUMEN

Wastewater surveillance has proven a cost-effective key public health tool to understand a wide range of community health diseases and has been a strong source of information on community levels and spread for health departments throughout the SARS- CoV-2 pandemic. Studies spanning the globe demonstrate the strong association between virus levels observed in wastewater and quality clinical case information of the population served by the sewershed. Few of these studies incorporate the temporal dependence present in sampling over time, which can lead to estimation issues which in turn impact conclusions. We contribute to the literature for this important public health science by putting forward time series methods coupled with statistical process control that (1) capture the evolving trend of a disease in the population; (2) separate the uncertainty in the population disease trend from the uncertainty due to sampling and measurement; and (3) support comparison of sub-sewershed population disease dynamics with those of the population represented by the larger downstream treatment plant. Our statistical methods incorporate the fact that measurements are over time, ensuring correct statistical conclusions. We provide a retrospective example of how sub-sewersheds virus levels compare to the upstream wastewater treatment plant virus levels. An on-line algorithm supports real-time statistical assessment of deviations of virus level in a population represented by a sub-sewershed to the virus level in the corresponding larger downstream wastewater treatment plant. This information supports public health decisions by spotlighting segments of the population where outbreaks may be occurring.


Asunto(s)
COVID-19 , Aguas Residuales , Humanos , Factores de Tiempo , ARN Viral/genética , SARS-CoV-2/genética , Estudios Retrospectivos , COVID-19/epidemiología , Monitoreo Epidemiológico Basado en Aguas Residuales
2.
Sci Total Environ ; 931: 172683, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38663617

RESUMEN

Wastewater monitoring is an efficient and effective way to surveil for various pathogens in communities. This is especially beneficial in areas of high transmission, such as preK-12 schools, where infections may otherwise go unreported. In this work, we apply wastewater disease surveillance using school and community wastewater from across Houston, Texas to monitor three major enteric viruses: astrovirus, sapovirus genogroup GI, and group A rotavirus. We present the results of a 10-week study that included the analysis of 164 wastewater samples for astrovirus, rotavirus, and sapovirus in 10 preK-12 schools, 6 wastewater treatment plants, and 2 lift stations using newly designed RT-ddPCR assays. We show that the RT-ddPCR assays were able to detect astrovirus, rotavirus, and sapovirus in school, lift station, and wastewater treatment plant (WWTP) wastewater, and that a positive detection of a virus in a school sample was paired with a positive detection of the same virus at a downstream lift station or wastewater treatment plant over 97 % of the time. Additionally, we show how wastewater detections of rotavirus in schools and WWTPs were significantly associated with citywide viral intestinal infections. School wastewater can play a role in the monitoring of enteric viruses and in the detection of outbreaks, potentially allowing public health officials to quickly implement mitigation strategies to prevent viral spread into surrounding communities.


Asunto(s)
Rotavirus , Sapovirus , Instituciones Académicas , Aguas Residuales , Aguas Residuales/virología , Sapovirus/aislamiento & purificación , Rotavirus/aislamiento & purificación , Texas , Monitoreo del Ambiente/métodos , Humanos , Mamastrovirus/aislamiento & purificación
3.
Stat (Int Stat Inst) ; 10(1): e357, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35864861

RESUMEN

Case-crossover design is a popular construction for analyzing the impact of a transient effect, such as ambient pollution levels, on an acute outcome, such as an asthma exacerbation. Case-crossover design avoids the need to model individual, time-varying risk factors for cases by using cases as their own 'controls', chosen to be time periods for which individual risk factors can be assumed constant and need not be modelled. Many studies have examined the complex effects of the control period structure on model performance, but these discussions were simplified when case-crossover design was shown to be equivalent to various specifications of Poisson regression when exposure is considered constant across study participants. While reasonable for some applications, there are cases where such an assumption does not apply due to spatial variability in exposure, which may affect parameter estimation. This work presents a spatiotemporal model, which has temporal case-crossover and a geometrically aware spatial random effect based on the Hausdorff distance. The model construction incorporates a residual spatial structure in cases when the constant assumption exposure is not reasonable and when spatial regions are irregular.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda