Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
1.
Immunol Rev ; 320(1): 58-82, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37455333

RESUMEN

Recent development of methods to discover and engineer therapeutic T-cell receptors (TCRs) or antibody mimics of TCRs, and to understand their immunology and pharmacology, lag two decades behind therapeutic antibodies. Yet we have every expectation that TCR-based agents will be similarly important contributors to the treatment of a variety of medical conditions, especially cancers. TCR engineered cells, soluble TCRs and their derivatives, TCR-mimic antibodies, and TCR-based CAR T cells promise the possibility of highly specific drugs that can expand the scope of immunologic agents to recognize intracellular targets, including mutated proteins and undruggable transcription factors, not accessible by traditional antibodies. Hurdles exist regarding discovery, specificity, pharmacokinetics, and best modality of use that will need to be overcome before the full potential of TCR-based agents is achieved. HLA restriction may limit each agent to patient subpopulations and off-target reactivities remain important barriers to widespread development and use of these new agents. In this review we discuss the unique opportunities for these new classes of drugs, describe their unique antigenic targets, compare them to traditional antibody therapeutics and CAR T cells, and review the various obstacles that must be overcome before full application of these drugs can be realized.


Asunto(s)
Neoplasias , Receptores de Antígenos de Linfocitos T , Humanos , Receptores de Antígenos de Linfocitos T/metabolismo , Neoplasias/terapia , Anticuerpos
2.
PLoS Pathog ; 20(1): e1011881, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38190392

RESUMEN

In people living with HIV, Kaposi Sarcoma (KS), a vascular neoplasm caused by KS herpesvirus (KSHV/HHV-8), remains one of the most common malignancies worldwide. Individuals living with HIV, receiving otherwise effective antiretroviral therapy, may present with extensive disease requiring chemotherapy. Hence, new therapeutic approaches are needed. The Wilms' tumor 1 (WT1) protein is overexpressed and associated with poor prognosis in several hematologic and solid malignancies and has shown promise as an immunotherapeutic target. We found that WT1 was overexpressed in >90% of a total 333 KS biopsies, as determined by immunohistochemistry and image analysis. Our largest cohort from ACTG, consisting of 294 cases was further analyzed demonstrating higher WT1 expression was associated with more advanced histopathologic subtypes. There was a positive correlation between the proportion of infected cells within KS tissues, assessed by expression of the KSHV-encoded latency-associated nuclear antigen (LANA), and WT1 positivity. Areas with high WT1 expression showed sparse T-cell infiltrates, consistent with an immune evasive tumor microenvironment. We show that major oncogenic isoforms of WT1 are overexpressed in primary KS tissue and observed WT1 upregulation upon de novo infection of endothelial cells with KSHV. KSHV latent viral FLICE-inhibitory protein (vFLIP) upregulated total and major isoforms of WT1, but upregulation was not seen after expression of mutant vFLIP that is unable to bind IKKÆ´ and induce NFκB. siRNA targeting of WT1 in latent KSHV infection resulted in decreased total cell number and pAKT, BCL2 and LANA protein expression. Finally, we show that ESK-1, a T cell receptor-like monoclonal antibody that recognizes WT1 peptides presented on MHC HLA-A0201, demonstrates increased binding to endothelial cells after KSHV infection or induction of vFLIP expression. We propose that oncogenic isoforms of WT1 are upregulated by KSHV to promote tumorigenesis and immunotherapy directed against WT1 may be an approach for KS treatment.


Asunto(s)
Infecciones por VIH , Herpesvirus Humano 8 , Sarcoma de Kaposi , Humanos , Herpesvirus Humano 8/fisiología , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/metabolismo , Proteínas WT1/genética , Proteínas WT1/metabolismo , Células Endoteliales/metabolismo , Infecciones por VIH/metabolismo , Isoformas de Proteínas/metabolismo , Microambiente Tumoral
3.
Blood ; 143(6): 507-521, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38048594

RESUMEN

ABSTRACT: Chimeric antigen receptor T-cell (CAR T) therapy has produced remarkable clinical responses in B-cell neoplasms. However, many challenges limit this class of agents for the treatment of other cancer types, in particular the lack of tumor-selective antigens for solid tumors and other hematological malignancies, such as acute myeloid leukemia (AML), which may be addressed without significant risk of severe toxicities while providing sufficient abundance for efficient tumor suppression. One approach to overcome this hurdle is dual targeting by an antibody-T-cell receptor (AbTCR) and a chimeric costimulatory signaling receptor (CSR) to 2 different antigens, in which both antigens are found together on the cancer cells but not together on normal cells. To explore this proof of concept in AML, we engineered a new T-cell format targeting Wilms tumor 1 protein (WT1) and CD33; both are highly expressed on most AML cells. Using an AbTCR comprising a newly developed TCR-mimic monoclonal antibody against the WT1 RMFPNAPYL (RMF) epitope/HLA-A2 complex, ESK2, and a secondary CSR comprising a single-chain variable fragment directed to CD33 linked to a truncated CD28 costimulatory fragment, this unique platform confers specific T-cell cytotoxicity to the AML cells while sparing healthy hematopoietic cells, including CD33+ myelomonocytic normal cells. These data suggest that this new platform, named AbTCR-CSR, through the combination of a AbTCR CAR and CSR could be an effective strategy to reduce toxicity and improve specificity and clinical outcomes in adoptive T-cell therapy in AML.


Asunto(s)
Leucemia Mieloide Aguda , Anticuerpos de Cadena Única , Humanos , Linfocitos T , Receptores de Antígenos de Linfocitos T , Leucemia Mieloide Aguda/patología , Inmunoterapia Adoptiva
4.
Blood ; 141(16): 2003-2015, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-36696633

RESUMEN

Chimeric antigen receptor (CAR) T-cell therapy has shown success in the treatment of hematopoietic malignancies; however, relapse remains a significant issue. To overcome this, we engineered "Orexi" CAR T cells to locally secrete a high-affinity CD47 blocker, CV1, at the tumor and treated tumors in combination with an orthogonally targeted monoclonal antibody. Traditional CAR T cells plus the antibody had an additive effect in xenograft models, and this effect was potentiated by CAR T-cell local CV1 secretion. Furthermore, OrexiCAR-secreted CV1 reversed the immunosuppression of myelomonocytoid cells both in vitro and within the tumor microenvironment. Local secretion of the CD47 inhibitor bypasses the CD47 sink found on all cells in the body and may prevent systemic toxicities. This combination of CAR T-cell therapy, local CD47 blockade, and orthogonal antibody may be a combinatorial strategy to overcome the limitations of each monotherapy.


Asunto(s)
Antígeno CD47 , Neoplasias , Humanos , Recurrencia Local de Neoplasia , Neoplasias/patología , Linfocitos T , Inmunoterapia Adoptiva , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Monoclonales/farmacología , Microambiente Tumoral
5.
Mol Psychiatry ; 29(7): 2084-2094, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38383769

RESUMEN

CD33 is a transmembrane receptor expressed on cells of myeloid lineage and regulates innate immunity. CD33 is a risk factor for Alzheimer's disease (AD) and targeting CD33 has been a promising strategy drug development. However, the mechanism of CD33's action is poorly understood. Here we investigate the mechanism of anti-CD33 antibody HuM195 (Lintuzumab) and its single-chain variable fragment (scFv) and examine their therapeutic potential. Treatment with HuM195 full-length antibody or its scFv increased phagocytosis of ß-amyloid 42 (Aß42) in human microglia and monocytes. This activation of phagocytosis was driven by internalization and degradation of CD33, thereby downregulating its inhibitory signal. HumM195 transiently induced CD33 phosphorylation and its signaling via receptor dimerization. However, this signaling decayed with degradation of CD33. scFv binding to CD33 leads to a degradation of CD33 without detection of the CD33 dimerization and signaling. Moreover, we found that treatments with either HuM195 or scFv promotes the secretion of IL33, a cytokine implicated in microglia reprogramming. Importantly, recombinant IL33 potentiates the uptake of Aß42 in monocytes. Collectively, our findings provide unanticipated mechanistic insight into the role of CD33 signaling in both monocytes and microglia and define a molecular basis for the development of CD33-based therapy of AD.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Microglía , Monocitos , Fagocitosis , Lectina 3 Similar a Ig de Unión al Ácido Siálico , Transducción de Señal , Anticuerpos de Cadena Única , Microglía/metabolismo , Microglía/efectos de los fármacos , Humanos , Lectina 3 Similar a Ig de Unión al Ácido Siálico/metabolismo , Péptidos beta-Amiloides/metabolismo , Fagocitosis/efectos de los fármacos , Fagocitosis/fisiología , Anticuerpos de Cadena Única/farmacología , Anticuerpos de Cadena Única/metabolismo , Transducción de Señal/efectos de los fármacos , Enfermedad de Alzheimer/metabolismo , Monocitos/metabolismo , Monocitos/efectos de los fármacos , Anticuerpos Monoclonales Humanizados/farmacología , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/farmacología , Fosforilación/efectos de los fármacos
6.
Blood ; 140(8): 861-874, 2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-35427421

RESUMEN

Target identification for chimeric antigen receptor (CAR) T-cell therapies remains challenging due to the limited repertoire of tumor-specific surface proteins. Intracellular proteins presented in the context of cell surface HLA provide a wide pool of potential antigens targetable through T-cell receptor mimic antibodies. Mass spectrometry (MS) of HLA ligands from 8 hematologic and nonhematologic cancer cell lines identified a shared, non-immunogenic, HLA-A*02-restricted ligand (ALNEQIARL) derived from the kinetochore-associated NDC80 gene. CAR T cells directed against the ALNEQIARL:HLA-A*02 complex exhibited high sensitivity and specificity for recognition and killing of multiple cancer types, especially those of hematologic origin, and were efficacious in mouse models against a human leukemia and a solid tumor. In contrast, no toxicities toward resting or activated healthy leukocytes as well as hematopoietic stem cells were observed. This shows how MS can inform the design of broadly reactive therapeutic T-cell receptor mimic CAR T-cell therapies that can target multiple cancer types currently not druggable by small molecules, conventional CAR T cells, T cells, or antibodies.


Asunto(s)
Neoplasias Hematológicas , Neoplasias , Animales , Anticuerpos/metabolismo , Proteínas del Citoesqueleto/metabolismo , Antígenos HLA-A , Neoplasias Hematológicas/metabolismo , Neoplasias Hematológicas/terapia , Humanos , Inmunoterapia Adoptiva/métodos , Ratones , Receptores de Antígenos de Linfocitos T , Linfocitos T
7.
Nat Chem Biol ; 18(2): 216-225, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34969970

RESUMEN

Chimeric antigen receptor (CAR)-T cells represent a major breakthrough in cancer therapy, wherein a patient's own T cells are engineered to recognize a tumor antigen, resulting in activation of a local cytotoxic immune response. However, CAR-T cell therapies are currently limited to the treatment of B cell cancers and their effectiveness is hindered by resistance from antigen-negative tumor cells, immunosuppression in the tumor microenvironment, eventual exhaustion of T cell immunologic functions and frequent severe toxicities. To overcome these problems, we have developed a novel class of CAR-T cells engineered to express an enzyme that activates a systemically administered small-molecule prodrug in situ at a tumor site. We show that these synthetic enzyme-armed killer (SEAKER) cells exhibit enhanced anticancer activity with small-molecule prodrugs, both in vitro and in vivo in mouse tumor models. This modular platform enables combined targeting of cellular and small-molecule therapies to treat cancers and potentially a variety of other diseases.


Asunto(s)
Antineoplásicos/uso terapéutico , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Sistemas de Liberación de Medicamentos , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Neoplasias/terapia , Neoplasias Experimentales , Profármacos , Receptores Quiméricos de Antígenos , Linfocitos T , Microambiente Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Cancer Immunol Immunother ; 72(11): 3773-3786, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37635172

RESUMEN

Epithelial ovarian cancer is the most lethal of gynecological cancers. The therapeutic efficacy of chimeric antigen receptor (CAR) T cell directed against single antigens is limited by the heterogeneous target antigen expression in epithelial ovarian tumors. To overcome this limitation, we describe an engineered cell with both dual targeting and orthogonal cytotoxic modalities directed against two tumor antigens that are highly expressed on ovarian cancer cells: cell surface Muc16 and intracellular WT1. Muc16-specific CAR T cells (4H11) were engineered to secrete a bispecific T cell engager (BiTE) constructed from a TCR mimic antibody (ESK1) reactive with the WT1-derived epitope RMFPNAPYL (RMF) presented by HLA-A2 molecules. The secreted ESK1 BiTE recruited and redirected other T cells to WT1 on the tumor cells. We show that ESK1 BiTE-secreting 4H11 CAR T cells exhibited enhanced anticancer activity against cancer cells with low Muc16 expression, compared to 4H11 CAR T cells alone, both in vitro and in mouse tumor models. Dual orthogonal cytotoxic modalities with different specificities targeting both surface and intracellular tumor-associated antigens present a promising strategy to overcome resistance to CAR T cell therapy in epithelial ovarian cancer and other cancers.


Asunto(s)
Neoplasias Ováricas , Receptores Quiméricos de Antígenos , Humanos , Ratones , Femenino , Animales , Carcinoma Epitelial de Ovario/terapia , Neoplasias Ováricas/terapia , Antígenos de Neoplasias , Linfocitos T , Proteínas WT1
9.
Mol Ther ; 29(12): 3398-3409, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34217891

RESUMEN

Cellular therapies are engineered using foreign and synthetic protein sequences, such as chimeric antigen receptors (CARs). The frequently observed humoral responses to CAR T cells result in rapid clearance, especially after re-infusions. There is an unmet need to protect engineered cells from host-versus-graft rejection, particularly for the advancement of allogeneic cell therapies. Here, utilizing the immunoglobulin G (IgG) protease "IdeS," we programmed CAR T cells to defeat humoral immune attacks. IdeS cleavage of host IgG averted Fc-dependent phagocytosis and lysis, and the residual F(ab')2 fragments remained on the surface, providing cells with an inert shield from additional IgG deposition. "Shield" CAR T cells efficiently cleaved cytotoxic IgG, including anti-CAR antibodies, detected in patient samples and provided effective anti-tumor activity in the presence of anti-cell IgG in vivo. This technology may be useful for repeated human infusions of engineered cells, more complex engineered cells, and expanding widespread use of "off-the-shelf" allogeneic cellular therapies.


Asunto(s)
Inmunoglobulina G , Receptores Quiméricos de Antígenos , Humanos , Fagocitosis , Receptores Quiméricos de Antígenos/metabolismo
10.
Cancer Immunol Immunother ; 70(5): 1189-1202, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33123756

RESUMEN

Identification of neoepitopes as tumor-specific targets remains challenging, especially for cancers with low mutational burden, such as ovarian cancer. To identify mutated human leukocyte antigen (HLA) ligands as potential targets for immunotherapy in ovarian cancer, we combined mass spectrometry analysis of the major histocompatibility complex (MHC) class I peptidomes of ovarian cancer cells with parallel sequencing of whole exome and RNA in a patient with high-grade serous ovarian cancer. Four of six predicted mutated epitopes capable of binding to HLA-A*02:01 induced peptide-specific T cell responses in blood from healthy donors. In contrast, all six peptides failed to induce autologous peptide-specific response by T cells in peripheral blood or tumor-infiltrating lymphocytes from ascites of the patient. Surprisingly, T cell responses against a low-affinity p53-mutant Y220C epitope were consistently detected in the patient with either unprimed or in vitro peptide-stimulated T cells even though the patient's primary tumor did not bear this mutation. Our results demonstrated that tumor heterogeneity and distinct immune microenvironments within a patient should be taken into consideration for identification of immunogenic neoantigens. T cell responses to a driver gene-derived p53 Y220C mutation in ovarian cancer warrant further study.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Epítopos de Linfocito T/metabolismo , Antígeno HLA-A2/metabolismo , Inmunoterapia Adoptiva/métodos , Mutación/genética , Neoplasias Ováricas/inmunología , Linfocitos T/inmunología , Proteína p53 Supresora de Tumor/metabolismo , Antígenos de Neoplasias/genética , Células Cultivadas , Epítopos de Linfocito T/genética , Femenino , Antígeno HLA-A2/genética , Humanos , Persona de Mediana Edad , Estadificación de Neoplasias , Microambiente Tumoral , Proteína p53 Supresora de Tumor/genética , Secuenciación del Exoma
11.
Bioconjug Chem ; 32(4): 649-654, 2021 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-33819023

RESUMEN

Pretargeted imaging and radioimmunotherapy approaches are designed to have superior targeting properties over directly targeted antibodies but impose more complex pharmacology, which hinders efforts to optimize the ligands prior to human applications. Human embryonic kidney 293T cells expressing the humanized single-chain variable fragment (scFv) C825 (huC825) with high-affinity for DOTA-haptens (293T-huC825) in a transmembrane-anchored format eliminated the requirement to use other pretargeting reagents and provided a simplified, accelerated assay of radiohapten capture while offering normalized cell surface expression of the molecular target of interest. Using binding assays, ex vivo biodistribution, and in vivo imaging, we demonstrated that radiohaptens based on benzyl-DOTA and a second generation "Proteus" DOTA-platform effectively and specifically engaged membrane-bound huC825, achieving favorable tumor-to-normal tissue uptake ratios in mice. Furthermore, [86Y]Y-DOTA-Bn predicted absorbed dose to critical organs with reasonable accuracy for both [177Lu]Lu-DOTA-Bn and [225Ac]Ac-Pr, which highlights the benefit of a dosimetry-based treatment approach.


Asunto(s)
Ingeniería Celular , Haptenos , Radioinmunoterapia/métodos , Radiofármacos/química , Animales , Autorradiografía , Células HEK293 , Humanos , Ratones , Tomografía Computarizada por Tomografía de Emisión de Positrones , Radiofármacos/farmacocinética , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Blood ; 123(21): 3296-304, 2014 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-24723681

RESUMEN

Acute and chronic leukemias, including CD34(+) CML cells, demonstrate increased expression of the Wilms tumor gene 1 product (WT1), making WT1 an attractive therapeutic target. However, WT1 is a currently undruggable, intracellular protein. ESKM is a human IgG1 T-cell receptor mimic monoclonal antibody directed to a 9-amino acid sequence of WT1 in the context of cell surface HLA-A*02. ESKM was therapeutically effective, alone and in combination with tyrosine kinase inhibitors (TKIs), against Philadelphia chromosome-positive acute leukemia in murine models, including a leukemia with the most common, pan-TKI, gatekeeper resistance mutation, T315I. ESKM was superior to the first-generation TKI, imatinib. Combination therapy with ESKM and TKIs was superior to either drug alone, capable of curing mice. ESKM showed no toxicity to human HLA-A*02:01(+) stem cells under the conditions of this murine model. These features of ESKM make it a promising nontoxic therapeutic agent for sensitive and resistant Ph(+) leukemias.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/inmunología , Inhibidores de Proteínas Quinasas/uso terapéutico , Pirimidinas/uso terapéutico , Tiazoles/uso terapéutico , Proteínas WT1/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Línea Celular , Línea Celular Tumoral , Dasatinib , Resistencia a Antineoplásicos/efectos de los fármacos , Antígeno HLA-A2/inmunología , Humanos , Masculino , Ratones , Ratones SCID
14.
Blood ; 120(10): 2087-97, 2012 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-22829630

RESUMEN

Low linear energy transfer (LET) ionizing radiation (IR) is an important form of therapy for acute leukemias administered externally or as radioimmunotherapy. IR is also a potential source of DNA damage. High LET IR produces structurally different forms of DNA damage and has emerged as potential treatment of metastatic and hematopoietic malignancies. Therefore, understanding mechanisms of resistance is valuable. We created stable myeloid leukemia HL60 cell clones radioresistant to either γ-rays or α-particles to understand possible mechanisms in radioresistance. Cross-resistance to each type of IR was observed, but resistance to clustered, complex α-particle damage was substantially lower than to equivalent doses of γ-rays. The resistant phenotype was driven by changes in: apoptosis; late G2/M checkpoint accumulation that was indicative of increased genomic instability; stronger dependence on homology-directed repair; and more robust repair of DNA double-strand breaks and sublethal-type damage induced by γ-rays, but not by α-particles. The more potent cytotoxicity of α-particles warrants their continued investigation as therapies for leukemia and other cancers.


Asunto(s)
Partículas alfa/efectos adversos , Roturas del ADN de Doble Cadena/efectos de la radiación , Reparación del ADN , Rayos gamma/efectos adversos , Apoptosis/genética , Apoptosis/efectos de la radiación , Supervivencia Celular/genética , Supervivencia Celular/efectos de la radiación , Células Clonales , Relación Dosis-Respuesta en la Radiación , Puntos de Control de la Fase G2 del Ciclo Celular/genética , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de la radiación , Células HL-60 , Humanos , Transferencia Lineal de Energía , ARN Interferente Pequeño/genética , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo
15.
Pharmaceuticals (Basel) ; 17(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38256909

RESUMEN

The use of radionuclides for targeted endoradiotherapy is a rapidly growing field in oncology. In particular, the focus on the biological effects of different radiation qualities is an important factor in understanding and implementing new therapies. Together with the combined approach of imaging and therapy, therapeutic nuclear medicine has recently made great progress. A particular area of research is the use of alpha-emitting radionuclides, which have unique physical properties associated with outstanding advantages, e.g., for single tumor cell targeting. Here, recent results and open questions regarding the production of alpha-emitting isotopes as well as their chemical combination with carrier molecules and clinical experience from compassionate use reports and clinical trials are discussed.

16.
Cancer Immunol Res ; 12(10): 1361-1379, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38959337

RESUMEN

Chimeric antigen receptor (CAR) T-cell therapy has resulted in remarkable clinical success in the treatment of B-cell malignancies. However, its clinical efficacy in solid tumors is limited, primarily by target antigen heterogeneity. To overcome antigen heterogeneity, we developed CAR T cells that overexpress LIGHT, a ligand of both lymphotoxin-ß receptor on cancer cells and herpes virus entry mediator on immune cells. LIGHT-expressing CAR T cells displayed both antigen-directed cytotoxicity mediated by the CAR and antigen-independent killing mediated through the interaction of LIGHT with lymphotoxin-ß receptor on cancer cells. Moreover, CAR T cells expressing LIGHT had immunostimulatory properties that improved the cells' proliferation and cytolytic profile. These data indicate that LIGHT-expressing CAR T cells may provide a way to eliminate antigen-negative tumor cells to prevent antigen-negative disease relapse.


Asunto(s)
Inmunoterapia Adoptiva , Receptores Quiméricos de Antígenos , Linfocitos T , Miembro 14 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral , Humanos , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/metabolismo , Inmunoterapia Adoptiva/métodos , Miembro 14 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/metabolismo , Linfocitos T/inmunología , Animales , Línea Celular Tumoral , Citotoxicidad Inmunológica , Ratones , Receptor beta de Linfotoxina/inmunología , Receptor beta de Linfotoxina/metabolismo , Antígenos de Neoplasias/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto , Neoplasias/inmunología , Neoplasias/terapia
17.
J Biol Chem ; 287(21): 17288-17296, 2012 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-22461631

RESUMEN

Presenilin-1 (PS1) is the catalytic subunit of γ-secretase, and mutations in this protein cause familial Alzheimer Disease (FAD). However, little is known about how these mutations affect the active site of γ-secretase. Here, we show that PS1 mutations alter the S2 subsite within the active site of γ-secretase using a multiple photoaffinity probe approach called "photophore walking." Moreover, we developed a unique in vitro assay with a biotinylated recombinant Notch1 substrate and demonstrated that PS1 FAD mutations directly and significantly reduced γ-secretase activity for Notch1 cleavage. Substitution of the Notch Cys-1752 residue, which interacts with the S2 subsite, with Val, Met, or Ile has little effect on wild-type PS1 but leads to more efficient substrates for mutant PS1s. This study indicates that alteration of this S2 subsite plays an important role in determining the activity and specificity of γ-secretase for APP and Notch1 processing, which provides structural basis and insights on how certain PS1 FAD mutations lead to AD pathogenesis.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Enfermedades Genéticas Congénitas/metabolismo , Mutación Missense , Presenilina-1/metabolismo , Enfermedad de Alzheimer/genética , Sustitución de Aminoácidos , Secretasas de la Proteína Precursora del Amiloide/genética , Dominio Catalítico , Enfermedades Genéticas Congénitas/genética , Células HEK293 , Humanos , Presenilina-1/genética , Receptor Notch1/genética , Receptor Notch1/metabolismo
18.
Nucleic Acids Res ; 39(6): 2458-69, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21030439

RESUMEN

Long-term survival still eludes most patients with leukemia and non-Hodgkin's lymphoma. No approved therapies target the hallmark of the B cell, its mIgM, also known as the B-cell receptor (BCR). Aptamers are small oligonucleotides that can specifically bind to a wide range of target molecules and offer some advantages over antibodies as therapeutic agents. Here, we report the rational engineering of aptamer TD05 into multimeric forms reactive with the BCR that may be useful in biomedical applications. Systematic truncation of TD05 coupled with modification with locked nucleic acids (LNA) increased conformational stability and nuclease resistance. Trimeric and tetrameric versions with optimized polyethyleneglycol (PEG) linker lengths exhibited high avidity at physiological temperatures both in vitro and in vivo. Competition and protease studies showed that the multimeric, optimized aptamer bound to membrane-associated human mIgM, but not with soluble IgM in plasma, allowing the possibility of targeting leukemias and lymphomas in vivo. The B-cell specificity of the multivalent aptamer was confirmed on lymphoma cell lines and fresh clinical leukemia samples. The chemically engineered aptamers, with significantly improved kinetic and biochemical features, unique specificity and desirable pharmacological properties, may be useful in biomedical applications.


Asunto(s)
Aptámeros de Nucleótidos/química , Leucemia de Células B/metabolismo , Linfoma de Células B/metabolismo , Receptores de Antígenos de Linfocitos B/metabolismo , Animales , Aptámeros de Nucleótidos/metabolismo , Línea Celular Tumoral , Femenino , Humanos , Inmunoglobulina M/metabolismo , Ratones , Ratones Desnudos , Oligonucleótidos/química
19.
Proc Natl Acad Sci U S A ; 107(27): 12369-74, 2010 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-20566862

RESUMEN

The molecular weight cutoff for glomerular filtration is thought to be 30-50 kDa. Here we report rapid and efficient filtration of molecules 10-20 times that mass and a model for the mechanism of this filtration. We conducted multimodal imaging studies in mice to investigate renal clearance of a single-walled carbon nanotube (SWCNT) construct covalently appended with ligands allowing simultaneous dynamic positron emission tomography, near-infrared fluorescence imaging, and microscopy. These SWCNTs have a length distribution ranging from 100 to 500 nm. The average length was determined to be 200-300 nm, which would yield a functionalized construct with a molecular weight of approximately 350-500 kDa. The construct was rapidly (t(1/2) approximately 6 min) renally cleared intact by glomerular filtration, with partial tubular reabsorption and transient translocation into the proximal tubular cell nuclei. Directional absorption was confirmed in vitro using polarized renal cells. Active secretion via transporters was not involved. Mathematical modeling of the rotational diffusivity showed the tendency of flow to orient SWCNTs of this size to allow clearance via the glomerular pores. Surprisingly, these results raise questions about the rules for renal filtration, given that these large molecules (with aspect ratios ranging from 100:1 to 500:1) were cleared similarly to small molecules. SWCNTs and other novel nanomaterials are being actively investigated for potential biomedical applications, and these observations-that high aspect ratio as well as large molecular size have an impact on glomerular filtration-will allow the design of novel nanoscale-based therapeutics with unusual pharmacologic characteristics.


Asunto(s)
Tasa de Filtración Glomerular/fisiología , Glomérulos Renales/fisiología , Riñón/fisiología , Nanotubos de Carbono , Animales , Línea Celular , Técnica del Anticuerpo Fluorescente , Humanos , Riñón/citología , Riñón/metabolismo , Glomérulos Renales/metabolismo , Túbulos Renales Proximales/citología , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/fisiología , Cinética , Ratones , Microscopía Electrónica de Transmisión , Modelos Biológicos , Peso Molecular , Nefronas/metabolismo , Nefronas/fisiología , Transportadores de Anión Orgánico/metabolismo , Proteínas de Transporte de Catión Orgánico/metabolismo , Tamaño de la Partícula , Tomografía de Emisión de Positrones
20.
bioRxiv ; 2023 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-36798179

RESUMEN

Background: Certain phosphorylated peptides are differentially presented by MHC molecules on cancer cells characterized by aberrant phosphorylation. Phosphopeptides presented in complex with the human leukocyte antigen HLA-A*02:01 provide a stability advantage over their nonphosphorylated counterparts. This stability is thought to contribute to enhanced immunogenicity. Whether tumor-associated phosphopeptides presented by other common alleles exhibit immunogenicity and structural characteristics similar to those presented by A*02:01 is unclear. Therefore, we determined the identity, structural features, and immunogenicity of phosphopeptides presented by the prevalent alleles HLA-A*03:01, -A*11:01, -C*07:01, and - C*07:02. Methods: We isolated peptide-MHC complexes by immunoprecipitation from 10 healthy and neoplastic tissue samples using mass spectrometry, and then combined the resulting data with public immunopeptidomics datasets to assemble a curated set of phosphopeptides presented by 20 distinct healthy and neoplastic tissue types. We determined the biochemical features of selected phosphopeptides by in vitro binding assays and in silico docking, and their immunogenicity by analyzing healthy donor T cells for phosphopeptide-specific multimer binding and cytokine production. Results: We identified a subset of phosphopeptides presented by HLA-A*03:01, A*11:01, C*07:01 and C*07:02 on multiple tumor types, particularly lymphomas and leukemias, but not healthy tissues. These phosphopeptides are products of genes essential to lymphoma and leukemia survival. The presented phosphopeptides generally exhibited similar or worse binding to A*03:01 than their nonphosphorylated counterparts. HLA-C*07:01 generally presented phosphopeptides but not their unmodified counterparts. Phosphopeptide binding to HLA-C*07:01 was dependent on B- pocket interactions that were absent in HLA-C*07:02. While HLA-A*02:01 and -A*11:01 phosphopeptide-specific T cells could be readily detected in an autologous setting even when the nonphosphorylated peptide was co-presented, HLA-A*03:01 or -C*07:01 phosphopeptides were repeatedly nonimmunogenic, requiring use of allogeneic T cells to induce phosphopeptide- specific T cells. Conclusions: Phosphopeptides presented by multiple alleles that are differentially expressed on tumors constitute tumor-specific antigens that could be targeted for cancer immunotherapy, but the immunogenicity of such phosphopeptides is not a general feature. In particular, phosphopeptides presented by HLA-A*02:01 and A*11:01 exhibit consistent immunogenicity, while phosphopeptides presented by HLA-A*03:01 and C*07:01, although appropriately presented, are not immunogenic. Thus, to address an expanded patient population, phosphopeptide-targeted immunotherapies should be wary of allele-specific differences. What is already known on this topic - Phosphorylated peptides presented by the common HLA alleles A*02:01 and B*07:02 are differentially expressed by multiple tumor types, exhibit structural fitness due to phosphorylation, and are targets of healthy donor T cell surveillance, but it is not clear, however, whether such features apply to phosphopeptides presented by other common HLA alleles. What this study adds - We investigated the tumor presentation, binding, structural features, and immunogenicity of phosphopeptides to the prevalent alleles A*03:01, A*11:01, C*07:01, and C*07:02, selected on the basis of their presentation by malignant cells but not normal cells. We found tumor antigens derived from genetic dependencies in lymphomas and leukemias that bind HLA-A3, -A11, -C7 molecules. While we could detect circulating T cell responses in healthy individuals to A*02:01 and A*11:01 phosphopeptides, we did not find such responses to A*03:01 or C*07:01 phosphopeptides, except when utilizing allogeneic donor T cells, indicating that these phosphopeptides may not be immunogenic in an autologous setting but can still be targeted by other means. How this study might affect research, practice or policy - An expanded patient population expressing alleles other than A*02:01 can be addressed through the development of immunotherapies specific for phosphopeptides profiled in the present work, provided the nuances we describe between alleles are taken into consideration.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda