Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33723071

RESUMEN

Small GTPases of the Ras-homology (Rho) family are conserved molecular switches that control fundamental cellular activities in eukaryotic cells. As such, they are targeted by numerous bacterial toxins and effector proteins, which have been intensively investigated regarding their biochemical activities and discrete target spectra; however, the molecular mechanism of target selectivity has remained largely elusive. Here we report a bacterial effector protein that selectively targets members of the Rac subfamily in the Rho family of small GTPases but none in the closely related Cdc42 or RhoA subfamilies. This exquisite target selectivity of the FIC domain AMP-transferase Bep1 from Bartonella rochalimae is based on electrostatic interactions with a subfamily-specific pair of residues in the nucleotide-binding G4 motif and the Rho insert helix. Residue substitutions at the identified positions in Cdc42 enable modification by Bep1, while corresponding Cdc42-like substitutions in Rac1 greatly diminish modification. Our study establishes a structural understanding of target selectivity toward Rac-subfamily GTPases and provides a highly selective tool for their functional analysis.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de la Membrana/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas de Unión al GTP rac/química , Proteínas de Unión al GTP rac/metabolismo , Secuencia de Aminoácidos , Bartonella , Sitios de Unión , Modelos Moleculares , Familia de Multigenes , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad , Proteínas de Unión al GTP rac/genética
2.
Proc Natl Acad Sci U S A ; 117(29): 17211-17220, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32611811

RESUMEN

The bacterial second messenger cyclic diguanylate (c-di-GMP) regulates a wide range of cellular functions from biofilm formation to growth and survival. Targeting a second-messenger network is challenging because the system involves a multitude of components with often overlapping functions. Here, we present a strategy to intercept c-di-GMP signaling pathways by directly targeting the second messenger. For this, we developed a c-di-GMP-sequestering peptide (CSP) that was derived from a CheY-like c-di-GMP effector protein. CSP binds c-di-GMP with submicromolar affinity. The elucidation of the CSP⋅c-di-GMP complex structure by NMR identified a linear c-di-GMP-binding motif, in which a self-intercalated c-di-GMP dimer is tightly bound by a network of H bonds and π-stacking interactions involving arginine and aromatic residues. Structure-based mutagenesis yielded a variant with considerably higher, low-nanomolar affinity, which subsequently was shortened to 19 residues with almost uncompromised affinity. We demonstrate that endogenously expressed CSP intercepts c-di-GMP signaling and effectively inhibits biofilm formation in Pseudomonas aeruginosa, the most widely used model for serious biofilm-associated medical implications.


Asunto(s)
Proteínas Bacterianas/metabolismo , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Péptidos/metabolismo , Sistemas de Mensajero Secundario , Transducción de Señal , Biopelículas/crecimiento & desarrollo , Proteínas de Escherichia coli , Modelos Moleculares , Mutagénesis , Péptidos/química , Péptidos/genética , Mutación Puntual , Conformación Proteica , Dominios Proteicos , Dominios y Motivos de Interacción de Proteínas , Pseudomonas aeruginosa/metabolismo
3.
Proc Natl Acad Sci U S A ; 117(2): 1000-1008, 2020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31882446

RESUMEN

Cytosolic hybrid histidine kinases (HHKs) constitute major signaling nodes that control various biological processes, but their input signals and how these are processed are largely unknown. In Caulobacter crescentus, the HHK ShkA is essential for accurate timing of the G1-S cell cycle transition and is regulated by the corresponding increase in the level of the second messenger c-di-GMP. Here, we use a combination of X-ray crystallography, NMR spectroscopy, functional analyses, and kinetic modeling to reveal the regulatory mechanism of ShkA. In the absence of c-di-GMP, ShkA predominantly adopts a compact domain arrangement that is catalytically inactive. C-di-GMP binds to the dedicated pseudoreceiver domain Rec1, thereby liberating the canonical Rec2 domain from its central position where it obstructs the large-scale motions required for catalysis. Thus, c-di-GMP cannot only stabilize domain interactions, but also engage in domain dissociation to allosterically invoke a downstream effect. Enzyme kinetics data are consistent with conformational selection of the ensemble of active domain constellations by the ligand and show that autophosphorylation is a reversible process.


Asunto(s)
Caulobacter crescentus/metabolismo , GMP Cíclico/análogos & derivados , Histidina Quinasa/química , Histidina Quinasa/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Caulobacter crescentus/genética , Ciclo Celular/fisiología , Cristalografía por Rayos X , GMP Cíclico/química , GMP Cíclico/metabolismo , Histidina Quinasa/genética , Modelos Moleculares , Simulación de Dinámica Molecular , Fosforilación , Unión Proteica , Conformación Proteica , Dominios Proteicos , Sistemas de Mensajero Secundario
4.
Anal Biochem ; 639: 114523, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34906539

RESUMEN

We describe a quenching-free, 'online' ion exchange chromatography (oIEC) method for the quantitative analysis of enzymatic reactions in real-time. We show that separate quenching of the ongoing reaction performed conventionally is not required, since enzymatic reactions are interrupted upon immobilization of the reaction compounds by binding to the stationary phase of the ion exchange column. The reaction mix samples are directly injected into the column, thereby improving data consistency and allowing automation of the process. The method allows reliable and efficient acquisition of enzymatic progress curves by automatic loading of aliquots of an ongoing reaction at predefined timepoints. We demonstrate the applicability of this method for a variety of enzymatic reactions. SUBJECT: Enzymatic assays and analysis.


Asunto(s)
Cromatografía por Intercambio Iónico/métodos , Pruebas de Enzimas/métodos , Cromatografía por Intercambio Iónico/instrumentación , Pruebas de Enzimas/instrumentación , Diseño de Equipo , Proteínas Fúngicas/metabolismo , Hexoquinasa/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/metabolismo
5.
J Am Chem Soc ; 141(13): 5275-5285, 2019 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-30883103

RESUMEN

Sulfoxide synthases are nonheme iron enzymes that catalyze oxidative carbon-sulfur bond formation between cysteine derivatives and N-α-trimethylhistidine as a key step in the biosynthesis of thiohistidines. The complex catalytic mechanism of this enzyme reaction has emerged as the controversial subject of several biochemical and computational studies. These studies all used the structure of the γ-glutamyl cysteine utilizing sulfoxide synthase, MthEgtB from Mycobacterium thermophilum (EC 1.14.99.50), as a structural basis. To provide an alternative model system, we have solved the crystal structure of CthEgtB from Chloracidobacterium thermophilum (EC 1.14.99.51) that utilizes cysteine as a sulfur donor. This structure reveals a completely different configuration of active site residues that are involved in oxygen binding and activation. Furthermore, comparison of the two EgtB structures enables a classification of all ergothioneine biosynthetic EgtBs into five subtypes, each characterized by unique active-site features. This active site diversity provides an excellent platform to examine the catalytic mechanism of sulfoxide synthases by comparative enzymology, but also raises the question as to why so many different solutions to the same biosynthetic problem have emerged.


Asunto(s)
Acidobacteria/enzimología , Ergotioneína/biosíntesis , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Oxígeno/metabolismo , Sitios de Unión , Biocatálisis , Ergotioneína/química , Estructura Molecular , Oxidación-Reducción , Oxígeno/química
6.
Mol Cell ; 43(4): 550-60, 2011 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-21855795

RESUMEN

In Caulobacter crescentus, phosphorylation of key regulators is coordinated with the second messenger cyclic di-GMP to drive cell-cycle progression and differentiation. The diguanylate cyclase PleD directs pole morphogenesis, while the c-di-GMP effector PopA initiates degradation of the replication inhibitor CtrA by the AAA+ protease ClpXP to license S phase entry. Here, we establish a direct link between PleD and PopA reliant on the phosphodiesterase PdeA and the diguanylate cyclase DgcB. PdeA antagonizes DgcB activity until the G1-S transition, when PdeA is degraded by the ClpXP protease. The unopposed DgcB activity, together with PleD activation, upshifts c-di-GMP to drive PopA-dependent CtrA degradation and S phase entry. PdeA degradation requires CpdR, a response regulator that delivers PdeA to the ClpXP protease in a phosphorylation-dependent manner. Thus, CpdR serves as a crucial link between phosphorylation pathways and c-di-GMP metabolism to mediate protein degradation events that irreversibly and coordinately drive bacterial cell-cycle progression and development.


Asunto(s)
Caulobacter crescentus/citología , Ciclo Celular/fisiología , Modelos Biológicos , Sistemas de Mensajero Secundario , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/fisiología , Caulobacter crescentus/metabolismo , Caulobacter crescentus/fisiología , Polaridad Celular , Hidrolasas Diéster Fosfóricas/metabolismo , Hidrolasas Diéster Fosfóricas/fisiología , Fosforilación
7.
Proc Natl Acad Sci U S A ; 113(5): E529-37, 2016 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-26787847

RESUMEN

Filamentation induced by cyclic AMP (FIC)-domain enzymes catalyze adenylylation or other posttranslational modifications of target proteins to control their function. Recently, we have shown that Fic enzymes are autoinhibited by an α-helix (αinh) that partly obstructs the active site. For the single-domain class III Fic proteins, the αinh is located at the C terminus and its deletion relieves autoinhibition. However, it has remained unclear how activation occurs naturally. Here, we show by structural, biophysical, and enzymatic analyses combined with in vivo data that the class III Fic protein NmFic from Neisseria meningitidis gets autoadenylylated in cis, thereby autonomously relieving autoinhibition and thus allowing subsequent adenylylation of its target, the DNA gyrase subunit GyrB. Furthermore, we show that NmFic activation is antagonized by tetramerization. The combination of autoadenylylation and tetramerization results in nonmonotonic concentration dependence of NmFic activity and a pronounced lag phase in the progress of target adenylylation. Bioinformatic analyses indicate that this elaborate dual-control mechanism is conserved throughout class III Fic proteins.


Asunto(s)
Proteínas Bacterianas/metabolismo , Biopolímeros/metabolismo , AMP Cíclico/metabolismo , Neisseria meningitidis/enzimología , Nucleotidiltransferasas/metabolismo , Girasa de ADN/metabolismo , Modelos Moleculares
8.
Nature ; 482(7383): 107-10, 2012 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-22266942

RESUMEN

Fic proteins that are defined by the ubiquitous FIC (filamentation induced by cyclic AMP) domain are known to catalyse adenylylation (also called AMPylation); that is, the transfer of AMP onto a target protein. In mammalian cells, adenylylation of small GTPases through Fic proteins injected by pathogenic bacteria can cause collapse of the actin cytoskeleton and cell death. It is unknown how this potentially deleterious adenylylation activity is regulated in the widespread Fic proteins that are found in all domains of life and that are thought to have critical roles in intrinsic signalling processes. Here we show that FIC-domain-mediated adenylylation is controlled by a conserved mechanism of ATP-binding-site obstruction that involves an inhibitory α-helix (α(inh)) with a conserved (S/T)XXXE(G/N) motif, and that in this mechanism the invariable glutamate competes with ATP γ-phosphate binding. Consistent with this, FIC-domain-mediated growth arrest of bacteria by the VbhT toxin of Bartonella schoenbuchensis is intermolecularly repressed by the VbhA antitoxin through tight binding of its α(inh) to the FIC domain of VbhT, as shown by structure and function analysis. Furthermore, structural comparisons with other bacterial Fic proteins, such as Fic of Neisseria meningitidis and of Shewanella oneidensis, show that α(inh) frequently constitutes an amino-terminal or carboxy-terminal extension to the FIC domain, respectively, partially obstructing the ATP binding site in an intramolecular manner. After mutation of the inhibitory motif in various Fic proteins, including the human homologue FICD (also known as HYPE), adenylylation activity is considerably boosted, consistent with the anticipated relief of inhibition. Structural homology modelling of all annotated Fic proteins indicates that inhibition by α(inh) is universal and conserved through evolution, as the inhibitory motif is present in ∼90% of all putatively adenylylation-active FIC domains, including examples from all domains of life and from viruses. Future studies should reveal how intrinsic or extrinsic factors modulate adenylylation activity by weakening the interaction of α(inh) with the FIC active site.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , AMP Cíclico/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Bartonella , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Catálisis , Dominio Catalítico , Escherichia coli , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Ácido Glutámico/metabolismo , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Viabilidad Microbiana , Modelos Moleculares , Peso Molecular , Neisseria meningitidis , Nucleotidiltransferasas , Estructura Terciaria de Proteína , Shewanella
9.
J Bacteriol ; 198(3): 448-62, 2016 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-26553851

RESUMEN

UNLABELLED: Intracellular levels of the bacterial second messenger cyclic di-GMP (c-di-GMP) are controlled by antagonistic activities of diguanylate cyclases and phosphodiesterases. The phosphodiesterase PdeH was identified as a key regulator of motility in Escherichia coli, while deletions of any of the other 12 genes encoding potential phosphodiesterases did not interfere with motility. To analyze the roles of E. coli phosphodiesterases, we demonstrated that most of these proteins are expressed under laboratory conditions. We next isolated suppressor mutations in six phosphodiesterase genes, which reinstate motility in the absence of PdeH by reducing cellular levels of c-di-GMP. Expression of all mutant alleles also led to a reduction of biofilm formation. Thus, all of these proteins are bona fide phosphodiesterases that are capable of interfering with different c-di-GMP-responsive output systems by affecting the global c-di-GMP pool. This argues that E. coli possesses several phosphodiesterases that are inactive under laboratory conditions because they lack appropriate input signals. Finally, one of these phosphodiesterases, PdeL, was studied in more detail. We demonstrated that this protein acts as a transcription factor to control its own expression. Motile suppressor alleles led to a strong increase of PdeL activity and elevated pdeL transcription, suggesting that enzymatic activity and transcriptional control are coupled. In agreement with this, we showed that overall cellular levels of c-di-GMP control pdeL transcription and that this control depends on PdeL itself. We thus propose that PdeL acts both as an enzyme and as a c-di-GMP sensor to couple transcriptional activity to the c-di-GMP status of the cell. IMPORTANCE: Most bacteria possess multiple diguanylate cyclases and phosphodiesterases. Genetic studies have proposed that these enzymes show signaling specificity by contributing to distinct cellular processes without much cross talk. Thus, spatial separation of individual c-di-GMP signaling units was postulated. However, since most cyclases and phosphodiesterases harbor N-terminal signal input domains, it is equally possible that most of these enzymes lack their activating signals under laboratory conditions, thereby simulating signaling specificity on a genetic level. We demonstrate that a subset of E. coli phosphodiesterases can be activated genetically to affect the global c-di-GMP pool and thus influence different c-di-GMP-dependent processes. Although this does not exclude spatial confinement of individual phosphodiesterases, this study emphasizes the importance of environmental signals for activation of phosphodiesterases.


Asunto(s)
GMP Cíclico/análogos & derivados , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Regulación Bacteriana de la Expresión Génica/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Hidrolasas Diéster Fosfóricas/metabolismo , Secuencia de Aminoácidos , Dominio Catalítico , GMP Cíclico/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Movimiento , Hidrolasas Diéster Fosfóricas/genética , Grabación en Video
10.
J Biol Chem ; 289(10): 6978-6990, 2014 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-24451384

RESUMEN

The universal second messenger cyclic di-GMP (cdG) is involved in the regulation of a diverse range of cellular processes in bacteria. The intracellular concentration of the dinucleotide is determined by the opposing actions of diguanylate cyclases and cdG-specific phosphodiesterases (PDEs). Whereas most PDEs have accessory domains that are involved in the regulation of their activity, the regulatory mechanism of this class of enzymes has remained unclear. Here, we use biophysical and functional analyses to show that the isolated EAL domain of a PDE from Escherichia coli (YahA) is in a fast thermodynamic monomer-dimer equilibrium, and that the domain is active only in its dimeric state. Furthermore, our data indicate thermodynamic coupling between substrate binding and EAL dimerization with the dimerization affinity being increased about 100-fold upon substrate binding. Crystal structures of the YahA-EAL domain determined under various conditions (apo, Mg(2+), cdG·Ca(2+) complex) confirm structural coupling between the dimer interface and the catalytic center. The built-in regulatory properties of the EAL domain probably facilitate its modular, functional combination with the diverse repertoire of accessory domains.


Asunto(s)
3',5'-GMP Cíclico Fosfodiesterasas/metabolismo , GMP Cíclico/análogos & derivados , Proteínas de Escherichia coli/metabolismo , Sistemas de Mensajero Secundario , 3',5'-GMP Cíclico Fosfodiesterasas/química , 3',5'-GMP Cíclico Fosfodiesterasas/genética , Secuencia de Aminoácidos , Catálisis , Dominio Catalítico , Cristalografía por Rayos X , GMP Cíclico/química , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Hidrólisis , Datos de Secuencia Molecular , Multimerización de Proteína , Estructura Terciaria de Proteína
11.
Mol Microbiol ; 94(3): 580-94, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25171231

RESUMEN

When Caulobacter crescentus enters S-phase the replication initiation inhibitor CtrA dynamically positions to the old cell pole to be degraded by the polar ClpXP protease. Polar delivery of CtrA requires PopA and the diguanylate cyclase PleD that positions to the same pole. Here we present evidence that PopA originated through gene duplication from its paralogue response regulator PleD and subsequent co-option as c-di-GMP effector protein. While the C-terminal catalytic domain (GGDEF) of PleD is activated by phosphorylation of the N-terminal receiver domain, functional adaptation has reversed signal transduction in PopA with the GGDEF domain adopting input function and the receiver domain serving as regulatory output. We show that the N-terminal receiver domain of PopA specifically interacts with RcdA, a component required for CtrA degradation. In contrast, the GGDEF domain serves to target PopA to the cell pole in response to c-di-GMP binding. In agreement with the divergent activation and targeting mechanisms, distinct markers sequester PleD and PopA to the old cell pole upon S-phase entry. Together these data indicate that PopA adopted a novel role as topology specificity factor to help recruit components of the CtrA degradation pathway to the protease specific old cell pole of C. crescentus.


Asunto(s)
Proteínas Bacterianas/metabolismo , Caulobacter crescentus/citología , Caulobacter crescentus/fisiología , Puntos de Control del Ciclo Celular , GMP Cíclico/análogos & derivados , Proteínas Bacterianas/genética , GMP Cíclico/metabolismo , Modelos Moleculares , Fosforilación , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Procesamiento Proteico-Postraduccional
12.
Chembiochem ; 16(4): 592-601, 2015 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-25655925

RESUMEN

Functional promiscuity of enzymes can often be harnessed as the starting point for the directed evolution of novel biocatalysts. Here we describe the divergent morphing of an engineered thermostable variant (Var8) of a promiscuous D-tagatose epimerase (DTE) into two efficient catalysts for the C3 epimerization of D-fructose to D-psicose and of L-sorbose to L-tagatose. Iterative single-site randomization and screening of 48 residues in the first and second shells around the substrate-binding site of Var8 yielded the eight-site mutant IDF8 (ninefold improved kcat for the epimerization of D-fructose) and the six-site mutant ILS6 (14-fold improved epimerization of L-sorbose), compared to Var8. Structure analysis of IDF8 revealed a charged patch at the entrance of its active site; this presumably facilitates entry of the polar substrate. The improvement in catalytic activity of variant ILS6 is thought to relate to subtle changes in the hydration of the bound substrate. The structures can now be used to select additional sites for further directed evolution of the ketohexose epimerase.


Asunto(s)
Carbohidrato Epimerasas/genética , Carbohidrato Epimerasas/metabolismo , Hexosas/metabolismo , Mutagénesis , Pseudomonas/enzimología , Carbohidrato Epimerasas/química , Cristalografía por Rayos X , Fructosa/metabolismo , Modelos Moleculares , Pseudomonas/genética , Especificidad por Sustrato
13.
J Am Chem Soc ; 136(44): 15676-83, 2014 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-25317660

RESUMEN

An artificial imine reductase results upon incorporation of a biotinylated Cp*Ir moiety (Cp* = C5Me5(-)) within homotetrameric streptavidin (Sav) (referred to as Cp*Ir(Biot-p-L)Cl] ⊂ Sav). Mutation of S112 reveals a marked effect of the Ir/streptavidin ratio on both the saturation kinetics as well as the enantioselectivity for the production of salsolidine. For [Cp*Ir(Biot-p-L)Cl] ⊂ S112A Sav, both the reaction rate and the selectivity (up to 96% ee (R)-salsolidine, kcat 14-4 min(-1) vs [Ir], KM 65-370 mM) decrease upon fully saturating all biotin binding sites (the ee varying between 96% ee and 45% ee R). In contrast, for [Cp*Ir(Biot-p-L)Cl] ⊂ S112K Sav, both the rate and the selectivity remain nearly constant upon varying the Ir/streptavidin ratio [up to 78% ee (S)-salsolidine, kcat 2.6 min(-1), KM 95 mM]. X-ray analysis complemented with docking studies highlight a marked preference of the S112A and S112K Sav mutants for the SIr and RIr enantiomeric forms of the cofactor, respectively. Combining both docking and saturation kinetic studies led to the formulation of an enantioselection mechanism relying on an "induced lock-and-key" hypothesis: the host protein dictates the configuration of the biotinylated Ir-cofactor which, in turn, by and large determines the enantioselectivity of the imine reductase.


Asunto(s)
Biotina/química , Iminas/química , Oxidorreductasas/química , Estreptavidina/química , Cinética , Simulación del Acoplamiento Molecular , Conformación Proteica
14.
J Am Chem Soc ; 135(14): 5384-8, 2013 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-23496309

RESUMEN

Artificial metalloenzymes result from anchoring an active catalyst within a protein environment. Toward this goal, various localization strategies have been pursued: covalent, supramolecular, or dative anchoring. Herein we show that introduction of a suitably positioned histidine residue contributes to firmly anchor, via a dative bond, a biotinylated rhodium piano stool complex within streptavidin. The in silico design of the artificial metalloenzyme was confirmed by X-ray crystallography. The resulting artificial metalloenzyme displays significantly improved catalytic performance, both in terms of activity and selectivity in the transfer hydrogenation of imines. Depending on the position of the histidine residue, both enantiomers of the salsolidine product can be obtained.


Asunto(s)
Biotina/química , Compuestos Organometálicos/química , Rodio/química , Estreptavidina/química , Catálisis , Cristalografía por Rayos X , Modelos Moleculares , Estructura Molecular
15.
Sci Rep ; 13(1): 2727, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36810577

RESUMEN

Bacterial second messengers c-di-GMP and (p)ppGpp have broad functional repertoires ranging from growth and cell cycle control to the regulation of biofilm formation and virulence. The recent identification of SmbA, an effector protein from Caulobacter crescentus that is jointly targeted by both signaling molecules, has opened up studies on how these global bacterial networks interact. C-di-GMP and (p)ppGpp compete for the same SmbA binding site, with a dimer of c-di-GMP inducing a conformational change that involves loop 7 of the protein that leads to downstream signaling. Here, we report a crystal structure of a partial loop 7 deletion mutant, SmbA∆loop in complex with c-di-GMP determined at 1.4 Å resolution. SmbA∆loop binds monomeric c-di-GMP indicating that loop 7 is required for c-di-GMP dimerization. Thus the complex probably represents the first step of consecutive c-di-GMP binding to form an intercalated dimer as has been observed in wild-type SmbA. Considering the prevalence of intercalated c-di-GMP molecules observed bound to proteins, the proposed mechanism may be generally applicable to protein-mediated c-di-GMP dimerization. Notably, in the crystal, SmbA∆loop forms a 2-fold symmetric dimer via isologous interactions with the two symmetric halves of c-di-GMP. Structural comparisons of SmbA∆loop with wild-type SmbA in complex with dimeric c-di-GMP or ppGpp support the idea that loop 7 is critical for SmbA function by interacting with downstream partners. Our results also underscore the flexibility of c-di-GMP, to allow binding to the symmetric SmbA∆loop dimer interface. It is envisaged that such isologous interactions of c-di-GMP could be observed in hitherto unrecognized targets.


Asunto(s)
GMP Cíclico , Guanosina Pentafosfato , Dimerización , Ligandos , Guanosina Pentafosfato/metabolismo , GMP Cíclico/metabolismo , Proteínas Bacterianas/metabolismo
16.
Nat Commun ; 14(1): 1002, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36864019

RESUMEN

In two-component systems, the information gathered by histidine kinases (HKs) are relayed to cognate response regulators (RRs). Thereby, the phosphoryl group of the auto-phosphorylated HK is transferred to the receiver (Rec) domain of the RR to allosterically activate its effector domain. In contrast, multi-step phosphorelays comprise at least one additional Rec (Recinter) domain that is typically part of the HK and acts as an intermediary for phosphoryl-shuttling. While RR Rec domains have been studied extensively, little is known about discriminating features of Recinter domains. Here we study the Recinter domain of the hybrid HK CckA by X-ray crystallography and NMR spectroscopy. Strikingly, all active site residues of the canonical Rec-fold are pre-arranged for phosphoryl-binding and BeF3- binding does not alter secondary or quaternary structure, indicating the absence of allosteric changes, the hallmark of RRs. Based on sequence-covariation and modeling, we analyze the intra-molecular DHp/Rec association in hybrid HKs.


Asunto(s)
Histidina Quinasa , Cristalografía por Rayos X , Histidina Quinasa/química
17.
J Am Chem Soc ; 134(2): 1019-29, 2012 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-22142443

RESUMEN

Cyclic diguanosine-monophosphate (c-di-GMP) is a bacterial signaling molecule that triggers a switch from motile to sessile bacterial lifestyles. This mechanism is of considerable pharmaceutical interest, since it is related to bacterial virulence, biofilm formation, and persistence of infection. Previously, c-di-GMP has been reported to display a rich polymorphism of various oligomeric forms at millimolar concentrations, which differ in base stacking and G-quartet interactions. Here, we have analyzed the equilibrium and exchange kinetics between these various forms by NMR spectroscopy. We find that the association of the monomer into a dimeric form is in fast exchange (

Asunto(s)
GMP Cíclico/análogos & derivados , Bacterias/química , Bacterias/metabolismo , GMP Cíclico/química , Concentración de Iones de Hidrógeno , Cinética , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Estructura Molecular , Cloruro de Sodio , Espectrofotometría Ultravioleta
18.
J Immunol ; 182(4): 2141-51, 2009 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-19201867

RESUMEN

We report the three-dimensional structure of the complex between the major respiratory grass pollen allergen Phl p 2 and its specific human IgE-derived Fab. The Phl p 2-specific human IgE Fab has been isolated from a combinatorial library constructed from lymphocytes of a pollen allergic patient. When the variable domains of the IgE Fab were grafted onto human IgG1, the resulting Ab (huMab2) inhibited strongly the binding of allergic patients' IgE to Phl p 2 as well as allergen-induced basophil degranulation. Analysis of the binding of the allergen to the Ab by surface plasmon resonance yielded a very low dissociation constant (K(D) = 1.1 x 10(-10) M), which is similar to that between IgE and Fcepsilon;RI. The structure of the Phl p 2/IgE Fab complex was determined by x-ray crystallography to 1.9 A resolution revealing a conformational epitope (876 A(2)) comprised of the planar surface of the four-stranded anti-parallel beta-sheet of Phl p 2. The IgE-defined dominant epitope is discontinuous and formed by 21 residues located mostly within the beta strands. Of the 21 residues, 9 interact directly with 5 of the 6 CDRs (L1, L3, H1, H2, H3) of the IgE Fab predominantly by hydrogen bonding and van der Waals interactions. Our results indicate that IgE Abs recognize conformational epitopes with high affinity and provide a structural basis for the highly efficient effector cell activation by allergen/IgE immune complexes.


Asunto(s)
Alérgenos/química , Complejo Antígeno-Anticuerpo/química , Epítopos de Linfocito B/química , Inmunoglobulina E/química , Fragmentos Fab de Inmunoglobulinas/química , Proteínas de Plantas/química , Estructura Cuaternaria de Proteína , Alérgenos/inmunología , Anticuerpos Monoclonales/inmunología , Afinidad de Anticuerpos , Complejo Antígeno-Anticuerpo/inmunología , Cristalografía por Rayos X , Epítopos de Linfocito B/inmunología , Humanos , Inmunoglobulina E/inmunología , Fragmentos Fab de Inmunoglobulinas/inmunología , Proteínas de Plantas/inmunología , Resonancia por Plasmón de Superficie
19.
Nat Commun ; 12(1): 2162, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33846343

RESUMEN

Diguanylate cyclases synthesising the bacterial second messenger c-di-GMP are found to be regulated by a variety of sensory input domains that control the activity of their catalytical GGDEF domain, but how activation proceeds mechanistically is, apart from a few examples, still largely unknown. As part of two-component systems, they are activated by cognate histidine kinases that phosphorylate their Rec input domains. DgcR from Leptospira biflexa is a constitutively dimeric prototype of this class of diguanylate cyclases. Full-length crystal structures reveal that BeF3- pseudo-phosphorylation induces a relative rotation of two rigid halves in the Rec domain. This is coupled to a reorganisation of the dimeric structure with concomitant switching of the coiled-coil linker to an alternative heptad register. Finally, the activated register allows the two substrate-loaded GGDEF domains, which are linked to the end of the coiled-coil via a localised hinge, to move into a catalytically competent dimeric arrangement. Bioinformatic analyses suggest that the binary register switch mechanism is utilised by many diguanylate cyclases with N-terminal coiled-coil linkers.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Leptospira/enzimología , Liasas de Fósforo-Oxígeno/metabolismo , Regulación Alostérica , Secuencia de Aminoácidos , Ácido Aspártico/metabolismo , Berilio/química , Activación Enzimática , Proteínas de Escherichia coli/química , Retroalimentación Fisiológica , Fluoruros/química , Cinética , Modelos Moleculares , Liasas de Fósforo-Oxígeno/química , Fosforilación , Dominios Proteicos , Multimerización de Proteína , Estructura Secundaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Rotación
20.
Nat Microbiol ; 6(1): 59-72, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33168988

RESUMEN

Bacteria use small signalling molecules such as (p)ppGpp or c-di-GMP to tune their physiology in response to environmental changes. It remains unclear whether these regulatory networks operate independently or whether they interact to optimize bacterial growth and survival. We report that (p)ppGpp and c-di-GMP reciprocally regulate the growth of Caulobacter crescentus by converging on a single small-molecule-binding protein, SmbA. While c-di-GMP binding inhibits SmbA, (p)ppGpp competes for the same binding site to sustain SmbA activity. We demonstrate that (p)ppGpp specifically promotes Caulobacter growth on glucose, whereas c-di-GMP inhibits glucose consumption. We find that SmbA contributes to this metabolic switch and promotes growth on glucose by quenching the associated redox stress. The identification of an effector protein that acts as a central regulatory hub for two global second messengers opens up future studies on specific crosstalk between small-molecule-based regulatory networks.


Asunto(s)
Caulobacter crescentus/crecimiento & desarrollo , GMP Cíclico/análogos & derivados , Guanosina Pentafosfato/metabolismo , Sistemas de Mensajero Secundario/genética , Transferasas/metabolismo , Sitios de Unión/fisiología , Unión Competitiva/fisiología , Caulobacter crescentus/genética , Caulobacter crescentus/metabolismo , GMP Cíclico/metabolismo , Regulación Bacteriana de la Expresión Génica/genética , Glucosa/metabolismo , Oxidación-Reducción , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda