RESUMEN
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evolution has resulted in viral escape from clinically authorized monoclonal antibodies (mAbs), creating a need for mAbs that are resilient to epitope diversification. Broadly neutralizing coronavirus mAbs that are sufficiently potent for clinical development and retain activity despite viral evolution remain elusive. We identified a human mAb, designated VIR-7229, which targets the viral receptor-binding motif (RBM) with unprecedented cross-reactivity to all sarbecovirus clades, including non-ACE2-utilizing bat sarbecoviruses, while potently neutralizing SARS-CoV-2 variants since 2019, including the recent EG.5, BA.2.86, and JN.1. VIR-7229 tolerates extraordinary epitope variability, partly attributed to its high binding affinity, receptor molecular mimicry, and interactions with RBM backbone atoms. Consequently, VIR-7229 features a high barrier for selection of escape mutants, which are rare and associated with reduced viral fitness, underscoring its potential to be resilient to future viral evolution. VIR-7229 is a strong candidate to become a next-generation medicine.
RESUMEN
Rapidly evolving influenza A viruses (IAVs) and influenza B viruses (IBVs) are major causes of recurrent lower respiratory tract infections. Current influenza vaccines elicit antibodies predominantly to the highly variable head region of haemagglutinin and their effectiveness is limited by viral drift1 and suboptimal immune responses2. Here we describe a neuraminidase-targeting monoclonal antibody, FNI9, that potently inhibits the enzymatic activity of all group 1 and group 2 IAVs, as well as Victoria/2/87-like, Yamagata/16/88-like and ancestral IBVs. FNI9 broadly neutralizes seasonal IAVs and IBVs, including the immune-evading H3N2 strains bearing an N-glycan at position 245, and shows synergistic activity when combined with anti-haemagglutinin stem-directed antibodies. Structural analysis reveals that D107 in the FNI9 heavy chain complementarity-determinant region 3 mimics the interaction of the sialic acid carboxyl group with the three highly conserved arginine residues (R118, R292 and R371) of the neuraminidase catalytic site. FNI9 demonstrates potent prophylactic activity against lethal IAV and IBV infections in mice. The unprecedented breadth and potency of the FNI9 monoclonal antibody supports its development for the prevention of influenza illness by seasonal and pandemic viruses.
Asunto(s)
Anticuerpos Antivirales , Especificidad de Anticuerpos , Virus de la Influenza A , Virus de la Influenza B , Vacunas contra la Influenza , Gripe Humana , Imitación Molecular , Neuraminidasa , Animales , Humanos , Ratones , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Antivirales/química , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/uso terapéutico , Especificidad de Anticuerpos/inmunología , Arginina/química , Dominio Catalítico , Hemaglutininas Virales/inmunología , Virus de la Influenza A/clasificación , Virus de la Influenza A/enzimología , Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/enzimología , Subtipo H3N2 del Virus de la Influenza A/inmunología , Virus de la Influenza B/clasificación , Virus de la Influenza B/enzimología , Virus de la Influenza B/inmunología , Vacunas contra la Influenza/química , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/uso terapéutico , Gripe Humana/inmunología , Gripe Humana/prevención & control , Neuraminidasa/antagonistas & inhibidores , Neuraminidasa/química , Neuraminidasa/inmunología , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Estaciones del Año , Ácidos Siálicos/químicaRESUMEN
The recent emergence of SARS-CoV-2 variants of concern1-10 and the recurrent spillovers of coronaviruses11,12 into the human population highlight the need for broadly neutralizing antibodies that are not affected by the ongoing antigenic drift and that can prevent or treat future zoonotic infections. Here we describe a human monoclonal antibody designated S2X259, which recognizes a highly conserved cryptic epitope of the receptor-binding domain and cross-reacts with spikes from all clades of sarbecovirus. S2X259 broadly neutralizes spike-mediated cell entry of SARS-CoV-2, including variants of concern (B.1.1.7, B.1.351, P.1, and B.1.427/B.1.429), as well as a wide spectrum of human and potentially zoonotic sarbecoviruses through inhibition of angiotensin-converting enzyme 2 (ACE2) binding to the receptor-binding domain. Furthermore, deep-mutational scanning and in vitro escape selection experiments demonstrate that S2X259 possesses an escape profile that is limited to a single substitution, G504D. We show that prophylactic and therapeutic administration of S2X259 protects Syrian hamsters (Mesocricetus auratus) against challenge with the prototypic SARS-CoV-2 and the B.1.351 variant of concern, which suggests that this monoclonal antibody is a promising candidate for the prevention and treatment of emergent variants and zoonotic infections. Our data reveal a key antigenic site that is targeted by broadly neutralizing antibodies and will guide the design of vaccines that are effective against all sarbecoviruses.
Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Antivirales/inmunología , Anticuerpos ampliamente neutralizantes/inmunología , Anticuerpos ampliamente neutralizantes/uso terapéutico , COVID-19/prevención & control , SARS-CoV-2/clasificación , SARS-CoV-2/inmunología , Animales , Anticuerpos Monoclonales/química , Anticuerpos Antivirales/química , Anticuerpos Antivirales/uso terapéutico , Anticuerpos ampliamente neutralizantes/química , COVID-19/inmunología , COVID-19/virología , Reacciones Cruzadas/inmunología , Modelos Animales de Enfermedad , Femenino , Humanos , Evasión Inmune/genética , Evasión Inmune/inmunología , Mesocricetus/inmunología , Mesocricetus/virología , Mutación , Pruebas de Neutralización , SARS-CoV-2/química , SARS-CoV-2/genética , Zoonosis Virales/inmunología , Zoonosis Virales/prevención & control , Zoonosis Virales/virologíaRESUMEN
Antibody-dependent enhancement (ADE) of disease is a general concern for the development of vaccines and antibody therapies because the mechanisms that underlie antibody protection against any virus have a theoretical potential to amplify the infection or trigger harmful immunopathology. This possibility requires careful consideration at this critical point in the pandemic of coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here we review observations relevant to the risks of ADE of disease, and their potential implications for SARS-CoV-2 infection. At present, there are no known clinical findings, immunological assays or biomarkers that can differentiate any severe viral infection from immune-enhanced disease, whether by measuring antibodies, T cells or intrinsic host responses. In vitro systems and animal models do not predict the risk of ADE of disease, in part because protective and potentially detrimental antibody-mediated mechanisms are the same and designing animal models depends on understanding how antiviral host responses may become harmful in humans. The implications of our lack of knowledge are twofold. First, comprehensive studies are urgently needed to define clinical correlates of protective immunity against SARS-CoV-2. Second, because ADE of disease cannot be reliably predicted after either vaccination or treatment with antibodies-regardless of what virus is the causative agent-it will be essential to depend on careful analysis of safety in humans as immune interventions for COVID-19 move forward.
Asunto(s)
Anticuerpos Antivirales/efectos adversos , Anticuerpos Antivirales/inmunología , Acrecentamiento Dependiente de Anticuerpo/inmunología , Betacoronavirus/inmunología , Betacoronavirus/patogenicidad , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Neumonía Viral/inmunología , Neumonía Viral/virología , Animales , Anticuerpos Neutralizantes/efectos adversos , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales/uso terapéutico , COVID-19 , Vacunas contra la COVID-19 , Infecciones por Coronavirus/prevención & control , Virus del Dengue/inmunología , Modelos Animales de Enfermedad , Células HEK293 , Humanos , Fragmentos Fab de Inmunoglobulinas/inmunología , Fragmentos Fc de Inmunoglobulinas/inmunología , Inmunoglobulina G/inmunología , Macaca mulatta , Ratones , Coronavirus del Síndrome Respiratorio de Oriente Medio/inmunología , Orthomyxoviridae/inmunología , Pandemias , Ratas , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología , SARS-CoV-2 , Vacunas Virales/efectos adversos , Vacunas Virales/inmunologíaRESUMEN
The objective of this study was to evaluate the safety, tolerability, pharmacokinetics (PK), and immunogenicity of VIR-2482 in healthy adult subjects. A phase 1, first-in-human, randomized, double-blind, placebo-controlled dose-escalation study was conducted. One hundred participants were allocated to four cohorts (60 mg, 300 mg, 1,200 mg, and 1,800 mg). In each cohort, participants were randomized in a 4:1 ratio (active:placebo) to receive either VIR-2482 or volume-matched placebo by gluteal intramuscular injection. Participants remained at the investigative site under observation for 48 h, and adverse events (AEs) were collected for 56 days. PK and immunogenicity were measured up to 52 weeks post-dose. VIR-2482 was well tolerated at all doses studied. The overall incidence of AEs was comparable between VIR-2482 (68.8%) and placebo (85.0%). Nineteen VIR-2482 (23.8%) and six placebo (30.0%) recipients had Grade 1 or 2 AEs that were considered to be related to the study intervention. There were no treatment-related serious AEs. Injection-site reactions (ISRs) were reported in six (7.5%) VIR-2482 recipients, while no such reactions were reported among the placebo recipients. All ISRs were Grade 1, and there was no relationship with the dose. Median VIR-2482 serum elimination half-life ranged from 56.7 to 70.6 days across cohorts. The serum area under the curve and Cmax were dose-proportional. Nasopharyngeal VIR-2482 concentrations were approximately 2%-5% of serum levels and were less than dose-proportional. The incidence of immunogenicity across all cohorts was 1.3%. Overall, the safety, tolerability, and pharmacokinetic profile of VIR-2482 at doses up to 1,800 mg supported its further investigation as a long-acting antibody for the prevention of influenza A illness. This study has been registered at ClinicalTrials.gov under identifier NCT04033406.
Asunto(s)
Anticuerpos Monoclonales , Gripe Humana , Adulto , Humanos , Anticuerpos Monoclonales/efectos adversos , Gripe Humana/tratamiento farmacológico , Gripe Humana/prevención & control , Voluntarios Sanos , Método Doble CiegoRESUMEN
BACKGROUND & AIMS: Chronic hepatitis B is a global public health problem, and coinfection with hepatitis delta virus (HDV) worsens disease outcome. Here, we describe a hepatitis B virus (HBV) surface antigen (HBsAg)-targeting monoclonal antibody (mAb) with the potential to treat chronic hepatitis B and chronic hepatitis D. METHODS: HBsAg-specific mAbs were isolated from memory B cells of HBV vaccinated individuals. In vitro neutralization was determined against HBV and HDV enveloped with HBsAg representing eight HBV genotypes. Human liver-chimeric mice were treated twice weekly with a candidate mAb starting 3 weeks post HBV inoculation (spreading phase) or during stable HBV or HBV/HDV coinfection (chronic phase). RESULTS: From a panel of human anti-HBs mAbs, VIR-3434 was selected and engineered for pre-clinical development. VIR-3434 targets a conserved, conformational epitope within the antigenic loop of HBsAg and neutralized HBV and HDV infection with higher potency than hepatitis B immunoglobulins in vitro. Neutralization was pan-genotypic against strains representative of HBV genotypes A-H. In the spreading phase of HBV infection in human liver-chimeric mice, a parental mAb of VIR-3434 (HBC34) prevented HBV dissemination and the increase in intrahepatic HBV RNA and covalently closed circular DNA. In the chronic phase of HBV infection or co-infection with HDV, HBC34 treatment decreased circulating HBsAg by >1 log and HDV RNA by >2 logs. CONCLUSIONS: The potently neutralizing anti-HBs mAb VIR-3434 reduces circulating HBsAg and HBV/HDV viremia in human liver-chimeric mice. VIR-3434 is currently in clinical development for treatment of patients with chronic hepatitis B or D. IMPACT AND IMPLICATIONS: Chronic infection with hepatitis B virus and co-infection with hepatitis D virus place approximately 290 million individuals worldwide at risk of severe liver disease and cancer. Available treatments result in low rates of functional cure or require lifelong therapy that does not eliminate the risk of liver disease. We isolated and characterized a potent human antibody that neutralizes hepatitis B and D viruses and reduces infection in a mouse model. This antibody could provide a new treatment for patients with chronic hepatitis B and D.
RESUMEN
PURPOSE: Sotrovimab (VIR-7831), a human IgG1κ monoclonal antibody (mAb), binds to a conserved epitope on the SARS-CoV-2 spike protein receptor binding domain (RBD). The Fc region of VIR-7831 contains an LS modification to promote neonatal Fc receptor (FcRn)-mediated recycling and extend its serum half-life. Here, we aimed to evaluate the impact of the LS modification on tissue biodistribution, by comparing VIR-7831 to its non-LS-modified equivalent, VIR-7831-WT, in cynomolgus monkeys. METHODS: 89Zr-based PET/CT imaging of VIR-7831 and VIR-7831-WT was performed up to 14 days post injection. All major organs were analyzed for absolute concentration as well as tissue:blood ratios, with the focus on the respiratory tract, and a physiologically based pharmacokinetics (PBPK) model was used to evaluate the tissue biodistribution kinetics. Radiomics features were also extracted from the PET images and SUV values. RESULTS: SUVmean uptake in the pulmonary bronchi for 89Zr-VIR-7831 was statistically higher than for 89Zr-VIR-7831-WT at days 6 (3.43 ± 0.55 and 2.59 ± 0.38, respectively) and 10 (2.66 ± 0.32 and 2.15 ± 0.18, respectively), while the reverse was observed in the liver at days 6 (5.14 ± 0.80 and 8.63 ± 0.89, respectively), 10 (4.52 ± 0.59 and 7.73 ± 0.66, respectively), and 14 (4.95 ± 0.65 and 7.94 ± 0.54, respectively). Though the calculated terminal half-life was 21.3 ± 3.0 days for VIR-7831 and 16.5 ± 1.1 days for VIR-7831-WT, no consistent differences were observed in the tissue:blood ratios between the antibodies except in the liver. While the lung:blood SUVmean uptake ratio for both mAbs was 0.25 on day 3, the PBPK model predicted the total lung tissue and the interstitial space to serum ratio to be 0.31 and 0.55, respectively. Radiomics analysis showed VIR-7831 had mean-centralized PET SUV distribution in the lung and liver, indicating more uniform uptake than VIR-7831-WT. CONCLUSION: The half-life extended VIR-7831 remained in circulation longer than VIR-7831-WT, consistent with enhanced FcRn binding, while the tissue:blood concentration ratios in most tissues for both drugs remained statistically indistinguishable throughout the course of the experiment. In the bronchiolar region, a higher concentration of 89Zr-VIR-7831 was detected. The data also allow unparalleled insight into tissue distribution and elimination kinetics of mAbs that can guide future biologic drug discovery efforts, while the residualizing nature of the 89Zr label sheds light on the sites of antibody catabolism.
Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Recién Nacido , Humanos , Distribución Tisular , Macaca fascicularis/metabolismo , SARS-CoV-2/metabolismo , Tomografía Computarizada por Tomografía de Emisión de Positrones , Anticuerpos Monoclonales/metabolismo , CirconioRESUMEN
Co-infections of influenza virus and bacteria are known to cause severe disease, but little information exists on co-infections with other acute viruses. Seasonal influenza and dengue viruses (DENV) regularly co-circulate in tropical regions. The pandemic spread of influenza virus H1N1 (hereafter H1N1) in 2009 led to additional severe disease cases that were co-infected with DENV. Here, we investigated the impact of co-infection on immune responses and pathogenesis in a new mouse model. Co-infection of otherwise sublethal doses of a Nicaraguan clinical H1N1 isolate and two days later with a virulent DENV2 strain increased systemic DENV titers and caused 90% lethality. Lungs of co-infected mice carried both viruses, developed severe pneumonia, and expressed a unique pattern of host mRNAs, resembling only partial responses against infection with either virus alone. A large number of monocytes were recruited to DENV-infected but not to co-infected lungs, and depletion and adoptive transfer experiments revealed a beneficial role of monocytes. Our study shows that co-infection with influenza and DENV impairs host responses, which fail to control DENV titers and instead, induce severe lung damage. Further, our findings identify key inflammatory pathways and monocyte function as targets for future therapies that may limit immunopathology in co-infected patients.
Asunto(s)
Virus del Dengue/fisiología , Dengue/inmunología , Subtipo H1N1 del Virus de la Influenza A/fisiología , Gripe Humana/inmunología , Pulmón/inmunología , Monocitos/inmunología , Infecciones por Orthomyxoviridae/inmunología , Neumonía Viral/inmunología , Traslado Adoptivo , Animales , Células Cultivadas , Coinfección , Dengue/complicaciones , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Humanos , Gripe Humana/complicaciones , Pulmón/virología , Ratones , Ratones Endogámicos C57BL , Monocitos/virología , Neumonía Viral/etiología , Carga ViralRESUMEN
Dengue remains the most prevalent arthropod-borne viral disease in humans. While probing for blood vessels, Aedes aegypti and Ae. albopictus mosquitoes transmit the four serotypes of dengue virus (DENV1-4) by injecting virus-containing saliva into the skin. Even though arthropod saliva is known to facilitate transmission and modulate host responses to other pathogens, the full impact of mosquito saliva on dengue pathogenesis is still not well understood. Inoculating mice lacking the interferon-α/ß receptor intradermally with DENV revealed that mosquito salivary gland extract (SGE) exacerbates dengue pathogenesis specifically in the presence of enhancing serotype-cross-reactive antibodies-when individuals already carry an increased risk for severe disease. We further establish that SGE increases viral titers in the skin, boosts antibody-enhanced DENV infection of dendritic cells and macrophages in the dermis, and amplifies dendritic cell migration to skin-draining lymph nodes. We demonstrate that SGE directly disrupts endothelial barrier function in vitro and induces endothelial permeability in vivo in the skin. Finally, we show that surgically removing the site of DENV transmission in the skin after 4 hours rescued mice from disease in the absence of SGE, but no longer prevented lethal antibody-enhanced disease when SGE was present. These results indicate that SGE accelerates the dynamics of dengue pathogenesis after virus transmission in the skin and induces severe antibody-enhanced disease systemically. Our study reveals novel aspects of dengue pathogenesis and suggests that animal models of dengue and pre-clinical testing of dengue vaccines should consider mosquito-derived factors as well as enhancing antibodies.
Asunto(s)
Acrecentamiento Dependiente de Anticuerpo/inmunología , Movimiento Celular , Culicidae/virología , Dengue/transmisión , Células Endoteliales/virología , Insectos Vectores/patogenicidad , Saliva/metabolismo , Animales , Permeabilidad Capilar , Quimiotaxis de Leucocito/inmunología , Culicidae/metabolismo , Dengue/inmunología , Virus del Dengue/inmunología , Virus del Dengue/patogenicidad , Modelos Animales de Enfermedad , Células Endoteliales/inmunología , Citometría de Flujo , Insectos Vectores/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Saliva/inmunología , Saliva/virología , Piel/irrigación sanguínea , Piel/inmunologíaRESUMEN
Dengue virus (DENV) causes the most prevalent arthropod-borne viral disease in humans. Although Aedes mosquitoes transmit DENV when probing for blood in the skin, no information exists on DENV infection and immune response in the dermis, where the blood vessels are found. DENV suppresses the interferon response, replicates, and causes disease in humans but not wild-type mice. Here, we used mice lacking the interferon-α/ß receptor (Ifnar(-/-)), which had normal cell populations in the skin and were susceptible to intradermal DENV infection, to investigate the dynamics of early DENV infection of immune cells in the skin. CD103(+) classical dendritic cells (cDCs), Ly6C(-) CD11b(+) cDCs, and macrophages in the steady-state dermis were initial targets of DENV infection 12-24 hours post-inoculation but then decreased in frequency. We demonstrated recruitment of adoptively-transferred Ly6C(high) monocytes from wild-type and Ifnar(-/-) origin to the DENV-infected dermis and differentiation to Ly6C(+) CD11b(+) monocyte-derived DCs (moDCs), which became DENV-infected after 48 hours, and were then the major targets for virus replication. Ly6C(high) monocytes that entered the DENV-infected dermis expressed chemokine receptor CCR2, likely mediating recruitment. Further, we show that â¼ 100-fold more hematopoietic cells in the dermis were DENV-infected compared to Langerhans cells in the epidermis. Overall, these results identify the dermis as the main site of early DENV replication and show that DENV infection in the skin occurs in two waves: initial infection of resident cDCs and macrophages, followed by infection of monocytes and moDCs that are recruited to the dermis. Our study reveals a novel viral strategy of exploiting monocyte recruitment to increase the number of targets for infection at the site of invasion in the skin and highlights the skin as a potential site for therapeutic action or intradermal vaccination.
Asunto(s)
Diferenciación Celular/inmunología , Virus del Dengue/fisiología , Dengue/inmunología , Dermis/inmunología , Células de Langerhans/inmunología , Monocitos/inmunología , Replicación Viral/inmunología , Animales , Diferenciación Celular/genética , Dengue/genética , Dengue/patología , Dengue/prevención & control , Dermis/patología , Dermis/virología , Epidermis/inmunología , Epidermis/patología , Epidermis/virología , Células de Langerhans/patología , Células de Langerhans/virología , Ratones , Ratones Noqueados , Monocitos/patología , Monocitos/virología , Receptor de Interferón alfa y beta , VacunaciónRESUMEN
Dengue viruses (DENV) are mosquito-borne flaviviruses of global importance. DENV exist as four serotypes, DENV1-DENV4. Following a primary infection, individuals produce DENV-specific antibodies that bind only to the serotype of infection and other antibodies that cross-react with two or more serotypes. People exposed to a secondary DENV infection with another serotype are at greater risk of developing more severe forms of dengue disease. The increased risk of severe dengue in people experiencing repeat DENV infections appear to be due, at least in part, to the ability of pre-existing serotype cross-reactive antibodies to form virus-antibody complexes that can productively infect Fcγ receptor-bearing target cells. While the theory of antibody-dependent enhancement (ADE) is supported by several human and small animal model studies, the specific viral antigens and epitopes recognized by enhancing human antibodies after natural infections have not been fully defined. We used antibody-depletion techniques to remove DENV-specific antibody sub-populations from primary DENV-immune human sera. The effects of removing specific antibody populations on ADE were tested both in vitro using K562 cells and in vivo using the AG129 mouse model. Removal of serotype cross-reactive antibodies ablated enhancement of heterotypic virus infection in vitro and antibody-enhanced mortality in vivo. Further depletion studies using recombinant viral antigens showed that although the removal of DENV E-specific antibodies using recombinant E (rE) protein resulted in a partial reduction in DENV enhancement, there was a significant residual enhancement remaining. Competition ADE studies using prM-specific Fab fragments in human immune sera showed that both rE-specific and prM-specific antibodies in primary DENV-immune sera significantly contribute to enhancement of heterotypic DENV infection in vitro. Identification of the targets of DENV-enhancing antibodies should contribute to the development of safe, non-enhancing vaccines against dengue.
Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Acrecentamiento Dependiente de Anticuerpo/inmunología , Reacciones Cruzadas/inmunología , Virus del Dengue/inmunología , Sueros Inmunes/inmunología , Animales , Epítopos/inmunología , Humanos , Ratones , Pruebas de Neutralización/métodosRESUMEN
Dengue viruses are the most common arthropod-transmitted viral infection, with an estimated 390 million human infections annually and â¼3.6 billion people at risk. Currently, there are no approved vaccines or therapeutics available to control the global dengue virus disease burden. In this study, we demonstrate the binding, neutralizing activity, and therapeutic capacity of a novel bispecific dual-affinity retargeting molecule (DART) that limits infection of all four serotypes of dengue virus.
Asunto(s)
Anticuerpos Biespecíficos/uso terapéutico , Anticuerpos Monoclonales/uso terapéutico , Virus del Dengue/inmunología , Dengue/tratamiento farmacológico , Terapia Molecular Dirigida/métodos , Secuencia de Aminoácidos , Animales , Anticuerpos Biespecíficos/genética , Anticuerpos Biespecíficos/inmunología , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/inmunología , Reacciones Cruzadas/inmunología , Dengue/inmunología , Epítopos/genética , Humanos , Región Variable de Inmunoglobulina/genética , Estimación de Kaplan-Meier , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Pruebas de Neutralización , Especificidad de la Especie , Estadísticas no Paramétricas , Vacunas Virales/inmunologíaRESUMEN
Systemic bacterial infection is rapidly recognized as an emergency state leading to neutrophil release into the circulation and increased myeloid cell production within the bone marrow. However, the mechanisms of sensing infection and subsequent translation into emergency myelopoiesis have not been defined. In this study, we demonstrate in vivo in mice that, surprisingly, selective TLR4 expression within the hematopoietic compartment fails to induce LPS-driven emergency myelopoiesis. In contrast, TLR4-expressing nonhematopoietic cells are indispensable for LPS-induced, G-CSF-mediated myelopoietic responses. Furthermore, LPS-induced emergency myelopoiesis is independent of intact IL-1RI signaling and, thus, does not require inflammasome activation. Collectively, our findings reveal a key and nonredundant role for nonhematopoietic compartment pathogen sensing that is subsequently translated into cytokine release for enhanced, demand-adapted myeloid cell production.
Asunto(s)
Macrófagos/inmunología , Mielopoyesis/fisiología , Receptor Toll-Like 4/inmunología , Animales , Femenino , Citometría de Flujo , Lipopolisacáridos/inmunología , Lipopolisacáridos/farmacología , Hígado/citología , Hígado/inmunología , Ratones , Ratones Noqueados , Células Mieloides/inmunologíaRESUMEN
Clarifying the signals that lead to dendritic cell (DC) development and identifying cellular intermediates on their way to DC differentiation are essential steps to understand the dynamic regulation of number, localization, and functionality of these cells. In the past decade, much knowledge on cytokines, transcription factors, and successive progenitors involved in steady-state and demand-adapted DC development was gained. From the stage of multipotent progenitors, DCs are generated from Flt3(+) intermediates, irrespective of lymphoid or myeloid commitment, making fms-related tyrosine kinase 3 ligand one of the major regulators for DC development. Additional key cytokines involved are granulocyte-macrophage colony-stimulating factor (GM-CSF) and M-CSF, with each being essential for particular DC subsets and leading to specific activation of downstream transcription factors. In this review, we seek to draw an integrative view on how instructive cytokine signals acting on intermediate progenitors might lead to the generation of specific DC subsets in steady-state and during inflammation. We hypothesize that the lineage potential of a progenitor might be determined by the set of cytokine receptors expressed that make it responsive to further receive lineage instructive signals. Commitment to a certain lineage might consequently occur when lineage-relevant cytokine receptors are further upregulated and others for alternative lineages are lost. Along this line, we emphasize the role that diverse microenvironments have in influencing the generation of DC subsets with specific functions throughout the body.
Asunto(s)
Linaje de la Célula , Citocinas/inmunología , Células Dendríticas/inmunología , Transducción de Señal , Animales , Diferenciación Celular , Linaje de la Célula/inmunología , Células Madre Hematopoyéticas/inmunología , Humanos , Inflamación/inmunología , Mediadores de Inflamación/inmunología , Transducción de Señal/inmunologíaRESUMEN
Common dendritic cell progenitors (CDPs) in the bone marrow (BM) regenerate dendritic cells (DCs) in lymphoid and nonlymphoid tissues. How the dissemination of progenitor-derived DCs to peripheral tissues is regulated on need remains elusive. Microbes are sensed by pathogen recognition receptors such as Toll-like receptors (TLRs). We found that CDPs in the BM express TLR2, TLR4, and TLR9. On TLR stimulation, CDPs down-regulated CXCR4, the nonredundant chemokine receptor for their BM retention, up-regulated CCR7, and migrated to lymph nodes (LNs). When TLR agonists were injected locally, CDPs preferentially gave rise to DCs in inflamed LNs in expense of noninflamed LNs and the BM, but they did not alter their lineage differentiation and proliferative activity. Consequently, BM DC progenitors can sense TLR agonists and, via regulation of CXCR4 and CCR7, support the replenishment of DCs in reactive LNs. This mechanism likely developed to support DC homeostasis on specific need at sites of inflammation.
Asunto(s)
Movimiento Celular , Células Dendríticas/inmunología , Interacciones Huésped-Patógeno , Linfadenitis/inmunología , Células Madre/inmunología , Receptores Toll-Like/fisiología , Animales , Células de la Médula Ósea/inmunología , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/fisiología , Movimiento Celular/inmunología , Movimiento Celular/fisiología , Fenómenos Fisiológicos Celulares/genética , Células Cultivadas , Células Dendríticas/metabolismo , Células Dendríticas/fisiología , Femenino , Interacciones Huésped-Patógeno/genética , Inflamación/inmunología , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/metabolismo , Ganglios Linfáticos/patología , Linfadenitis/genética , Linfadenitis/metabolismo , Linfadenitis/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Madre/metabolismo , Células Madre/fisiología , Receptores Toll-Like/metabolismoRESUMEN
Currently circulating SARS-CoV-2 variants acquired convergent mutations at receptor-binding domain (RBD) hot spots. Their impact on viral infection, transmission, and efficacy of vaccines and therapeutics remains poorly understood. Here, we demonstrate that recently emerged BQ.1.1. and XBB.1 variants bind ACE2 with high affinity and promote membrane fusion more efficiently than earlier Omicron variants. Structures of the BQ.1.1 and XBB.1 RBDs bound to human ACE2 and S309 Fab (sotrovimab parent) explain the altered ACE2 recognition and preserved antibody binding through conformational selection. We show that sotrovimab binds avidly to all Omicron variants, promotes Fc-dependent effector functions and protects mice challenged with BQ.1.1, the variant displaying the greatest loss of neutralization. Moreover, in several donors vaccine-elicited plasma antibodies cross-react with and trigger effector functions against Omicron variants despite reduced neutralizing activity. Cross-reactive RBD-directed human memory B cells remained dominant even after two exposures to Omicron spikes, underscoring persistent immune imprinting. Our findings suggest that this previously overlooked class of cross-reactive antibodies, exemplified by S309, may contribute to protection against disease caused by emerging variants through elicitation of effector functions.
RESUMEN
Dengue virus (DENV) causes dengue fever and dengue haemorrhagic fever/dengue shock syndrome, both considered major public-health problems worldwide. We generated a lethal DENV-2 strain (D220) by 10 additional cycles of subcutaneous inoculation of mice with supernatant from mosquito cells infected with the previously characterized strain D2S10, followed by harvesting of serum. D220 induces mortality at ten-fold lower doses than D2S10 in mice lacking only the alpha/beta interferon (IFN-α/ß) receptor in C57BL/6 or 129 backgrounds under both non-enhanced and antibody-enhanced conditions. Sequence analysis of the complete viral genome revealed five amino acid changes between D220 and D2S10, of which two (K122I in envelope and V115A in NS4B) appear to account for the observed phenotypic differences between the viruses. By causing mortality at lower doses in C57BL/6 mice lacking only the IFN-α/ß receptor, D220 constitutes an improved tool for study of DENV-induced pathogenesis, as well as for testing potential vaccines and antiviral drugs against DENV.