Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Ecotoxicol Environ Saf ; 128: 36-43, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26890188

RESUMEN

Chromium III oxide (Cr2O3) nanoparticles (NPs) are used in pigments for ceramics, dyes, paints and cosmetics. However, few studies addressing the toxic potential of these NPs have been reported in the literature. Thus, this research aimed to evaluate the acute and chronic effects of Cr2O3 NPs through acute toxicity tests with Daphnia magna and Aliivibrio fischeri and chronic toxicity tests with Daphnia magna. Cr2O3 NPs were synthesized by the sol-gel method and characterized through TEM, X-Ray diffraction (XRD), zeta potential (ZP) and surface area analysis. In the acute toxicity tests the EC(50,48h) value obtained with D. magna was 6.79 mg L(-1) and for A. fischeri the EC(50,15min) value was 16.10 mg L(-1) and the EC(50,30min) value was 12.91 mg L(-1). Regarding the chronic toxicity tests with D. magna, effects on longevity (OEC=1.00 mg L(-1)), reproduction (OEC=1.00 mg L(-1)) and growth (OEC=0.50 mg L(-1)) were observed. On the SEM and TEM images, ultrastructural alterations in the organelles of exposed organisms were also observed. Thus, toxicological studies with NPs are of great importance in order to reduce the risk of environmental contamination.


Asunto(s)
Aliivibrio fischeri/efectos de los fármacos , Compuestos de Cromo/toxicidad , Daphnia/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Animales , Compuestos de Cromo/química , Daphnia/crecimiento & desarrollo , Daphnia/fisiología , Femenino , Nanopartículas del Metal/química , Nanopartículas del Metal/ultraestructura , Microscopía Electrónica de Transmisión , Reproducción/efectos de los fármacos , Pruebas de Toxicidad Aguda , Pruebas de Toxicidad Crónica , Difracción de Rayos X
2.
Ecotoxicology ; 24(5): 1040-52, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25750015

RESUMEN

As both food and source of a kappa-carrageenan, Hypnea musciformis represents a species of great economic interest. It also synthesizes substances with antiviral, anti-helminthic and anti-inflammatory potential and shows promise for use as a bioindicator of cadmium. In this study, we investigated the combined effects of seawater from three urbanized areas (area 1: natural runoff, NRA; area 2: urbanized runoff and sewage with treatment, RTA; area 3: urbanized runoff and untreated sewage, RUS) and three different temperatures (15, 25 and 30 °C) on the growth rate, photosynthetic efficiency, photosynthetic pigments and cell morphology of H. musciformis. After 4 days (96 h) of culture, the biomass of H. musciformis showed differences that fluctuated among the areas and temperature treatments. Specifically, the specimens cultivated in 35 °C had low values of ETRmax, α(ETR), ß(ETR), and Fv/Fm photosynthetic parameters, as well as changes in cell morphology, with reduction in photosynthetic pigments and drastic reduction in growth rates. When combined with the extreme temperatures, high concentrations of ammonium ion in seawater effluent caused an inhibition of photosynthetic activity, as well as significant variation in chlorophyll a and carotenoid contents. As observed by light microscopy, the synergism between different temperatures and pollutants found in eutrophic waters caused changes in cellular morphology with increased cell wall thickening and decreased floridean starch grains. H. musciformis also showed important changes in physiological response to each factor independently, as well as changes resulting from the synergistic interaction of these factors combined. Therefore, we can conclude that extreme temperature combined with the effect of eutrophic waters, especially RUS, caused distinct morphological and physiological changes in the red alga H. musciformis.


Asunto(s)
Fotosíntesis/fisiología , Rhodophyta/fisiología , Aguas del Alcantarillado/efectos adversos , Contaminantes del Agua/toxicidad , Biomasa , Rhodophyta/citología , Rhodophyta/crecimiento & desarrollo , Agua de Mar , Temperatura , Purificación del Agua
3.
J Phycol ; 50(3): 577-86, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26988329

RESUMEN

Gelidium floridanum W.R. Taylor tetraspores are units of dispersal and are responsible for substrate attachment. This study aimed to examine evidence of direct interaction between germ tube formation and Golgi activity during tetraspore germination of G. floridanum. After release, the tetraspores were incubated with brefeldin A (BFA) in concentrations of 4 and 8 µM over a 6 h period. The controls and treatments were analyzed with light, fluorescence (FM4-64 dye) and transmission electron microscopy. In the control samples, the Golgi bodies were responsible for germ tube formation. In contrast, BFA-treated samples were observed to inhibit spore adhesion and germ tube formation. These tetraspores also showed an increase in volume (≥30 µm width). BFA treatment also resulted in the disassembly of Golgi cisternae and the formation of vesiculated areas of the cytoplasm, blocking the secretion of protein and amorphous matrix polysaccharides. When stained with FM4-64, the control samples showed fluorescence in the apical region of the germ tube, but the treated samples showed an intense fluorescence throughout the cytoplasm. From these results, we can conclude that the germ tube is formed by the incorporation of vesicles derived from Golgi. Thus, vesicle secretion and Golgi organization are basic processes and essential in adhesion and tube formation. By blocking the secretion of protein and amorphous matrix polysaccharides, BFA treatment precluded tetraspore germination.

4.
Ecotoxicol Environ Saf ; 105: 80-9, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24793517

RESUMEN

Heavy metals, such as lead, copper, cadmium, zinc, and nickel, are among the most common pollutants found in both industrial and urban effluents. High concentrations of these metals cause severe toxic effects, especially to organisms living in the aquatic ecosystem. Cadmium (Cd), lead (Pb) and copper (Cu) are the heavy metals most frequently implicated as environmental contaminants, and they have been shown to affect development, growth, photosynthesis and respiration, and morphological cell organization in seaweeds. This paper aimed to evaluate the effects of 50µM and 100µM of Cd, Pb and Cu on growth rates, photosynthetic pigments, biochemical parameters and ultrastructure in Gelidium floridanum. To accomplish this, apical segments of G. floridanum were individually exposed to the respective heavy metals over a period of 7 days. Plants exposed to Cd, Cu and Pb showed discoloration of thallus pigmentation, chloroplast alteration, especially degeneration of thylakoids, and decrease in photosynthetic pigments, such as chlorophyll a and phycobiliproteins, in samples treated with Cd and Cu. Moreover, cell wall thickness and the volume of plastoglobuli increased. X-ray microanalysis detected Cd, Cu and Pb absorption in the cell wall. The results indicate that Cd, Pb and Cu negatively affect metabolic performance and cell ultrastructure in G. floridanum and that Cu was more toxic than either Pb or Cd.


Asunto(s)
Metales Pesados/metabolismo , Metales Pesados/toxicidad , Rhodophyta/efectos de los fármacos , Rhodophyta/metabolismo , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/toxicidad , Respiración de la Célula/efectos de los fármacos , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Fotosíntesis/efectos de los fármacos , Pigmentos Biológicos/metabolismo , Rhodophyta/crecimiento & desarrollo , Rhodophyta/ultraestructura
5.
Microsc Microanal ; 20(5): 1411-24, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24983815

RESUMEN

The in vitro effect of cadmium (Cd) on apical segments of Pterocladiella capillacea was examined. Over a period of 7 days, the segments were cultivated with the combination of different salinities (25, 35, and 45 practical salinity units) and Cd concentrations, ranging from 0.17 to 0.70 ppm. The effects of Cd on growth rates and content of photosynthetic pigments were analyzed. In addition, metabolic profiling was performed, and samples were processed for microscopy. Serious damage to physiological performance and ultrastructure was observed under different combinations of Cd concentrations and salinity values. Elementary infrared spectroscopy revealed toxic effects registered on growth rate, photosynthetic pigments, chloroplast, and mitochondria organization, as well as changes in lipids and carbohydrates. These alterations in physiology and ultrastructure were, however, coupled to activation of such defense mechanisms as cell wall thickness, reduction of photosynthetic harvesting complex, and flavonoid. In conclusion, P. capillacea is especially sensitive to Cd stress when intermediate concentrations of this pollutant are associated with low salinity values. Such conditions resulted in metabolic compromise, reduction of primary productivity, i.e., photosynthesis, and carbohydrate accumulation in the form of starch granules. Taken together, these findings improve our understanding of the potential impact of this metal in the natural environment.


Asunto(s)
Cadmio/toxicidad , Rhodophyta/efectos de los fármacos , Rhodophyta/crecimiento & desarrollo , Metaboloma , Microscopía , Pigmentos Biológicos/análisis , Rhodophyta/química , Rhodophyta/citología , Salinidad , Análisis Espectral
6.
Microsc Microanal ; 19(3): 513-24, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23551883

RESUMEN

The effect of lead and copper on apical segments of Gracilaria domingensis was examined. Over a period of 7 days, the segments were cultivated with concentrations of 5 and 10 ppm under laboratory conditions. The samples were processed for light, confocal, and electron microscopy, as well as histochemistry, to evaluate growth rates, mitochondrial activity, protein levels, chlorophyll a, phycobiliproteins, and carotenoids. After 7 days of exposure to lead and copper, growth rates were slower than control, and biomass loss was observed on copper-treated plants. Ultrastructural damage was primarily observed in the internal organization of chloroplasts and cell wall thickness. X-ray microanalysis detected lead in the cell wall, while copper was detected in both the cytoplasm and cell wall. Moreover, lead and copper exposure led to photodamage of photosynthetic pigments and, consequently, changes in photosynthesis. However, protein content and glutathione reductase activity decreased only in the copper treatments. In both treatments, decreased mitochondrial NADH dehydrogenase activity was observed. Taken together, the present study demonstrates that (1) heavy metals such as lead and copper negatively affect various morphological, physiological, and biochemical processes in G. domingensis and (2) copper is more toxic than lead in G. domingensis.


Asunto(s)
Cobre/toxicidad , Gracilaria/efectos de los fármacos , Plomo/toxicidad , Biomasa , Carotenoides/análisis , Pared Celular/química , Pared Celular/efectos de los fármacos , Pared Celular/ultraestructura , Clorofila/análisis , Clorofila A , Cloroplastos/efectos de los fármacos , Cloroplastos/ultraestructura , Cobre/análisis , Citoplasma/química , Microanálisis por Sonda Electrónica , Gracilaria/crecimiento & desarrollo , Gracilaria/metabolismo , Gracilaria/ultraestructura , Plomo/análisis , Microscopía , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , NADH Deshidrogenasa/metabolismo , Fotosíntesis/efectos de los fármacos , Ficobiliproteínas/análisis
7.
Microsc Microanal ; 18(6): 1467-79, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23153514

RESUMEN

We undertook a study of Porphyra acanthophora var. brasiliensis to determine its responses under ambient conditions, photosynthetically active radiation (PAR), and PAR+UVBR (ultraviolet radiation-B) treatment, focusing on changes in ultrastructure, and cytochemistry. Accordingly, control ambient samples were collected in the field, and two different treatments were performed in the laboratory. Plants were exposed to PAR at 60 µmol photons m-2 s-1 and PAR + UVBR at 0.35 W m-2 for 3 h per day during 21 days of in vitro cultivation. Confocal laser scanning microscopy analysis of the vegetative cells showed single stellate chloroplast in ambient and PAR samples, but in PAR+UVBR-exposed plants, the chloroplast showed alterations in the number and form of arms. Under PAR+UVBR treatment, the thylakoids of the chloroplasts were disrupted, and an increase in the number of plastoglobuli was observed, in addition to mitochondria, which appeared with irregular, disrupted morphology compared to ambient and PAR samples. After UVBR exposure, the formation of carpospores was also observed. Plants under ambient conditions, as well as those treated with PAR and PAR+UVBR, all showed different concentrations of enzymatic response, including glutathione peroxidase and reductase activity. In summary, the present study demonstrates that P. acanthophora var. brasiliensis shows the activation of distinct mechanisms against natural radiation, PAR and PAR+UVBR.


Asunto(s)
Cloroplastos/metabolismo , Cloroplastos/efectos de la radiación , Porphyra/metabolismo , Porphyra/efectos de la radiación , Rayos Ultravioleta , Carotenoides/análisis , Forma de la Célula/efectos de la radiación , Pared Celular/metabolismo , Clorofila/análisis , Clorofila A , Citoplasma/metabolismo , Activación Enzimática , Pruebas de Enzimas , Glutatión Peroxidasa/metabolismo , Microscopía Confocal/métodos , Mitocondrias/metabolismo , Mitocondrias/efectos de la radiación , NADH Deshidrogenasa , Forma de los Orgánulos/efectos de la radiación , Fotones , Fotosíntesis , Células Vegetales/metabolismo , Porphyra/enzimología , Porphyra/crecimiento & desarrollo , Factores de Tiempo
8.
Protoplasma ; 257(3): 931-948, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31950285

RESUMEN

This study addresses gaps in our understanding of pre-fertilization and archegonia development and reinterprets embryonic ontogenesis from Burlingame (Bot Gaz 59:1-39, 1915) to the present based on timescale and structural features allowing us to determine functionally and developmentally accurate terminology for all these stages in A. angustifolia. Different from previous reports, only after pollination, pre-fertilization tissue development occurs (0-13 months after pollination (MAP)) and gives rise to a mature megagametophyte. During all this period, pollen is in a dormant state at the microphyla, and pollen tube germination in nucellus tissue is only observed at the stage of archegonia formation (13 MAP) and not at the free nuclei stage as reported before. For the first time, 14 months after pollination, a fertilization window was indicated, and at 15 MAP, the polyzygotic polyembryony from different archegonia was also seen. After that, subordinated proembryo regression occurs and at least three embryonic developmental stages of dominant embryo were characterized: proembryogenic, early embryogenic, and late embryogenic (15-23 MAP). Along these stages, histochemical and ultrastructural analyses suggest the occurrence of cell death in suspensor and in cap cells of dominant embryo that was not previously reported. The differentiation of meristems, procambium, pith, and cortex tissues in late embryogenic stage was detailed. The morphohistological characterization of pre-fertilization and embryonic stages, together with the timescale of megastrobili development, warranted a referential map of female reproductive structure in this species.


Asunto(s)
Araucaria/química , Polen/embriología , Historia del Siglo XX , Historia del Siglo XXI
9.
Protoplasma ; 254(4): 1529-1537, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27838782

RESUMEN

Halodule wrightii is an ecologically important seagrass; however, little is known about the adaptation of this species in the context of environmental change, particularly changes arising from alterations in salinity of coastal ecosystems. This study aimed to determine the effects of different salinities on growth, morphology, leaf ultrastructure, and cell viability of H. wrightii. To accomplish this, plants were cultivated for 21 days in salinities of 25, 35, and 45. More hydropotens were observed in samples exposed to salinity of 45 with increased invagination of the plasma membrane and cell wall. These invaginations were also observed in other epidermal cells of the leaf blade. In particular, a significant retraction of plasma membrane was seen in samples exposed to salinity of 45, with possible deposition of compounds between the membrane and cell wall. Osmotic stress in samples exposed to salinity of 45 affected the chloroplasts through an increase in plastoglobules and thylakoids by granum in the epidermal chloroplasts of the leaf and decrease in the number of chloroplasts. Overall, this study showed that H. wrightii can survive within salinities that range between 25 and 45 without changing growth rate. However, the plant did have higher cell viability at salinity of 35. Salt stress in mesocosms, at both salinity of 25 and 45, decreased cell viability in this species. H . wrightii had greater changes in salinity of 45; this showed that the species is more tolerant of salinities below this value.


Asunto(s)
Alismatales/crecimiento & desarrollo , Hojas de la Planta/crecimiento & desarrollo , Alismatales/ultraestructura , Supervivencia Celular , Hojas de la Planta/ultraestructura , Salinidad , Plantas Tolerantes a la Sal/crecimiento & desarrollo , Plantas Tolerantes a la Sal/ultraestructura , Agua de Mar
10.
Protoplasma ; 254(2): 817-837, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27352314

RESUMEN

Sargassum cymosum was exposed to cadmium (Cd) to determine any physiological and ultrastructural effects. To accomplish this, S. cymosum samples were cultivated under photosynthetic active radiation (PAR) and Cd (0, 0.1, 0.2, 0.4 and 0.8 mg L-1) during 7 and 14 days in laboratory-controlled conditions (0 mg L-1 Cd at both exposure times as control). Seaweeds had high retention capacity (over 90 %) for both exposure times. Growth rates showed significant increases by 14 days, especially for 0.1 and 0.4 mg L-1 Cd. Photosynthetic parameters were unaffected by Cd treatments. Chlorophyll contents were present in higher concentrations for all Cd treatments compared to respective control. Carotenoid profile showed significant differences in total composition and proportion of fucoxanthin and ß-carotene, and no lutein was detected at 14 days. Phenolic and flavonoid compounds showed major accumulation at 14 days. Transmission electron microscopy (TEM) analyses presented major alterations in Cd-treated samples, when compared with respective control, in particular disorganization of cell wall fibrils. When compared to respective control samples, multivariate analyses showed disparate and complex interactions among metabolites in Cd-exposed seaweeds, giving evidence of physiological defence response. Thus, it can be concluded that Cd is a stressor for S. cymosum, resulting in physiological and structural alterations related to defence mechanisms against oxidative stress and toxicological effects resulting from long-term metal exposure. However, in the present paper, some observed changes also appear to result from acclimation mechanisms under lower concentration of Cd relative to the tolerance of S. cymosum to experimental conditions.


Asunto(s)
Cadmio/toxicidad , Sargassum/citología , Sargassum/metabolismo , Algas Marinas/citología , Algas Marinas/metabolismo , Análisis de Varianza , Antioxidantes/metabolismo , Cadmio/análisis , Carbohidratos/análisis , Supervivencia Celular/efectos de los fármacos , Clorofila/metabolismo , Clorofila A , Cromatografía Líquida de Alta Presión , Flavonoides/análisis , Fluorescencia , Análisis Multivariante , Fenoles/análisis , Fotosíntesis/efectos de los fármacos , Análisis de Componente Principal , Sargassum/efectos de los fármacos , Sargassum/ultraestructura , Agua de Mar/química , Algas Marinas/efectos de los fármacos , Algas Marinas/ultraestructura , Solubilidad
11.
Aquat Toxicol ; 191: 50-61, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28800408

RESUMEN

Phenanthnere (PHE) is a polycyclic aromatic hydrocarbon continuously discarded in the marine environment and bioavailable to many aquatic species. Although studies about PHE toxicity have been documented for adult oysters, the effects on early developmental stages are poorly characterized in bivalves. In this study, the effects of PHE (0.02 and 2.0µg.L-1) were evaluated on the embryogenesis and larval development of Crassostrea gigas. Toxicity bioassays, growth and deformities assessment, analysis of shell calcium abundance and transcript levels of genes related to xenobiotic biotransformation (CYP2AU2, CYP30C1), immune system (Cg-Tal) and tissue growth and shell formation (Ferritin, Insulin-like, Cg-Try, Calmodulin and Nacrein) were assayed in D-shape larvae after 24h of PHE exposure. At the highest concentration (2.0µg.L-1), PHE decreased the frequency of normal development (19.7±2.9%) and shell size (53.5±2.8mm). Developmental deformities were mostly related to abnormal mantle and shell formation. Lower calcium levels in oyster shells exposed to PHE 2.0µg.L-1 were observed, suggesting effects on shell structure. At this same PHE concentration, CYP30C1, Cg-Tal, Cg-Tyr, Calmodulin were upregulated and CYP2AU2, Ferritin, Nacrein, and Insulin-Like were downregulated compared to control larvae. At the lowest PHE concentration (0.02µg.L-1), it was observed a minor decrease in normal larval development (89,6±6%) and the remaining parameters were not affected. This is the first study to provide evidences that exposure to PHE can affect early oyster development at the molecular and morphological levels, possibly threatening this bivalve species.


Asunto(s)
Crassostrea/efectos de los fármacos , Embrión no Mamífero/efectos de los fármacos , Desarrollo Embrionario/efectos de los fármacos , Fenantrenos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Exoesqueleto/efectos de los fármacos , Exoesqueleto/metabolismo , Animales , Calcio/metabolismo , Crassostrea/embriología , Crassostrea/genética , Embrión no Mamífero/anomalías , Embrión no Mamífero/enzimología , Expresión Génica/efectos de los fármacos , Larva , Fenantrenos/análisis , Agua de Mar/química , Contaminantes Químicos del Agua/análisis
12.
J Microsc Ultrastruct ; 4(2): 85-94, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-30023214

RESUMEN

Studies have clearly demonstrated the damaging effects of UV-B exposure on macroalgae, but few have reported the impact of UV-B on spore germination and development at juvenile stages. Therefore, this work aimed to analyze the effects of UV-B radiation on germlings of Nemalion helminthoides at the tetrasporophytic phase. To accomplish this, germlings of N. helminthoides were cultivated in the laboratory and separated into two groups. The control group was exposed onlyto photosynthetic radiation, while the treatment group was exposed to photosynthetic radiation + UV-B for 2 hours during a period of 12 days. Control germlings showed increasing cellular proliferation and accumulation of reserve substances, as well as intense ramification in the last observed stages between 9 days and 12 days of development. Moreover, the chloroplasts presented a typical globular pyrenoid, profusely traversed by thylakoid membranes. Treated germlings, by contrast, showed intracellular damage, such as cell wall thickness, loss of chloroplast organization, changes in mitochondrial cristae, and increasing atrophy of the Golgi bodies. Additionally, changes in developmental patterns were observed, including loss of polarity in the first divisions of carpospores and abnormal stem ramification. The quantification of autofluorescence data coincided with the ultrastructural changes observed in the chloroplasts of cells exposed to UV-B. It can be concluded that exposure to radiation changed the developmental pattern and morphology of the germlings of N. helminthoides.

13.
Mar Environ Res ; 115: 89-97, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26724873

RESUMEN

Seasonal changes in the biochemistry and photophysiology of the brown macroalga Cystoseira tamariscifolia was analyzed in southern Spain. Total carbon and nitrogen contents, phenolic compounds, antioxidant and photosynthetic activities were seasonally determined over two years. Carbon, nitrogen and photoprotective phenolic contents were higher in winter and spring than in summer and autumn. Antioxidant levels were highest in spring and we found a positive correlation between phenolic content and antioxidant activity (EC50). Photosynthetic capacity (ETRmax) and photosynthetic efficiency (αETR) were also highest in spring, and there was a positive correlation between ETRmax and the amount of phenols present. Increased irradiance in spring enhanced algal productivity, antioxidant activity and the production of photoprotective compounds but in summer nutrient depletion due to thermal stratification of coastal waters reduced photosynthetic activity and the photoprotective capacity of C. tamariscifolia. Electron microscopy showed that phenols occurred in the cytoplasm of cortical cells inside physodes. Spring would be the best period to harvest C. tamariscifolia to extract photoprotectors and antioxidants for potential commercial uses, although the environmental impacts would need to be carefully assessed.


Asunto(s)
Phaeophyceae/fisiología , Antioxidantes/análisis , Carbono/análisis , Nitrógeno/análisis , Phaeophyceae/química , Phaeophyceae/efectos de la radiación , Phaeophyceae/ultraestructura , Fenoles/análisis , Fotosíntesis/fisiología , Estaciones del Año , Luz Solar
14.
Protoplasma ; 253(2): 487-501, 2016 03.
Artículo en Inglés | MEDLINE | ID: mdl-25968333

RESUMEN

Somatic embryogenesis is a morphogenetic route useful for the study of embryonic development, as well as the large-scale propagation of endangered species, such as the Brazilian pine (Araucaria angustifolia). In the present study, we investigated the morphological and ultrastructural organization of A. angustifolia somatic embryo development by means of optical and electron microscopy. The proembryogenic stage was characterized by the proliferation of proembryogenic masses (PEMs), which are cellular aggregates composed of embryogenic cells (ECs) attached to suspensor-like cells (SCs). PEMs proliferate through three developmental stages, PEM I, II, and III, by changes in the number of ECs and SCs. PEM III-to-early somatic embryo (SE) transition was characterized by compact clusters of ECs growing out of PEM III, albeit still connected to it by SCs. Early SEs showed a dense globular embryonic mass (EM) and suspensor region (SR) connected by embryonic tube cells (TCs). By comparison, early somatic and zygotic embryos showed similar morphology. ECs are round with a large nucleus, nucleoli, and many cytoplasmic organelles. In contrast, TCs and SCs are elongated and vacuolated with cellular dismantling which is associated with programmed cell death of SCs. Abundant starch grains were observed in the TCs and SCs, while proteins were more abundant in the ECs. Based on the results of this study, a fate map of SE development in A. angustifolia is, for the first time, proposed. Additionally, this study shows the cell biology of SE development of this primitive gymnosperm which may be useful in evolutionary studies in this area.


Asunto(s)
Semillas/ultraestructura , Árboles/ultraestructura , Técnicas de Cultivo , Semillas/crecimiento & desarrollo , Árboles/crecimiento & desarrollo
15.
Protoplasma ; 253(1): 111-25, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25772683

RESUMEN

The effects of the heavy metals copper (Cu) and lead (Pb) on Sargassum cymosum were evaluated by determining uptake capacity, growth rates, photosynthetic efficiency, contents of photosynthetic pigments and phenolic compounds, 2,2-diphenyl-1-picrylhydrazyl radical-scavenging capacity, and morphological and cellular changes. S. cymosum was cultivated with Cu and Pb separately and combined at concentrations of 10, 25, and 50 µM for 7 days in laboratory-controlled conditions. Seaweeds under Cu treatment showed the highest biosorption capacity, and growth rates were significantly reduced compared to the control. The photosynthesis/irradiance curves showed alterations in kinetic patterns in the metal-treated samples. Specifically, Cu treatment alone inhibited electron transport rate (ETR) response, while Pb alone induced it. However, samples treated with both Cu and Pb (Cu + Pb) showed inhibition in ETR. The total amount of pigments increased relative to control. Light microscopy showed an increase in phenolic compounds, with physodes migrating towards cortical cells. Scanning electronic microscopy revealed alterations in the typical rough surface of thallus, when compared with control, especially for Pb treatments. Based on these results, it could be concluded that Cu and Pb are stress factors for S. cymosum, promoting alterations in seaweed metabolism and stimulating protective mechanisms against oxidative stress. However, the high bioaccumulation capacity of both heavy metals indicates a possible application for S. cymosum as a biosorbent agent for contaminated wastewater when metals are in low concentrations.


Asunto(s)
Cobre/toxicidad , Plomo/toxicidad , Algas Marinas/efectos de los fármacos , Algas Marinas/fisiología , Absorción Fisiológica/efectos de los fármacos , Antioxidantes/metabolismo , Clorofila/metabolismo , Clorofila A , Transporte de Electrón/efectos de los fármacos , Fluorescencia , Fenoles/metabolismo , Fotosíntesis/efectos de los fármacos , Algas Marinas/crecimiento & desarrollo , Algas Marinas/ultraestructura , Agua/metabolismo
16.
J Microsc Ultrastruct ; 3(4): 200-209, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-30023200

RESUMEN

Micropropagation via induction, multiplication and development of nodular cultures (NCs) is an efficient regeneration system for Bromeliaceae, a family of endangered monocot plants with ornamental value. Therefore, the present work aimed to induce NCs from seeds and leaf explants of Vriesea in order to characterize the morphological and histochemical aspects of induction and formation of these cultures. Seeds of Vriesea friburgensis var. paludosa were sterilized and inoculated into liquid culture media supplemented with different concentrations and combinations of growth regulators. Leaf explants of Vriesea reitzii were inoculated into medium supplemented with 4 µM α-naphthalene acetic acid (NAA) and 2 µM 6-benzylaminopurine (BAP). The addition of NAA (4 µM) in the culture medium used for seeds led to an induction rate of 72% in NCs. First, the embryo began to germinate, and afterwards, nodular structures started to form. While NCs formed from seeds is associated with root and shoot meristems, the formation of NCs from leaf explants involves the intercalary meristem. Meristematic cells generate an appropriate response in the induction medium, producing NCs by the proliferation of small cells with meristematic characteristics and large vacuolated cells. These results provide a better understanding of morphogenetic responses in bromeliads and, hence, the opportunity to develop optimized micropropagation protocols. Abbreviations: BAP, 6-benzylaminopurine; 2-iP, N6 (2-isopentyl) adenine; CBB, Coomassie Brilliant Blue; CLSM, confocal laser scanning microscopy; MSB, MS basal medium; NAA, α-Naphthalene acetic acid; NCs, nodular cultures; PAS, Periodic Acid-Schiff; SEM, scanning electron microscopy; TDZ, N-phenyl-N'-1,2,3-thidiazol-5-ylurea; TB-O, Toluidine Blue O; TEM, Transmission electron microscopy.

17.
Protoplasma ; 252(5): 1203-15, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25563715

RESUMEN

Copper and lead, as remnants of industrial activities and urban effluents, have heavily contaminated many aquatic environments. Therefore, this study aimed to determine their effects on the physiological, biochemical, and cell organization responses of Hypnea musciformis under laboratory conditions during a 7-day experimental period. To accomplish this, segments of H. musciformis were exposed to photosynthetic active radiation at 80 µmol photons m(-2) s(-1), Cu (0.05 and 0.1 mg kg(-1)), and Pb (3.5 and 7 mg kg(-1)). Various intracellular abnormalities resulted from exposure to Cu and Pb, including a decrease in phycobiliproteins. Moreover, carotenoid and flavonoid contents, as well as phenolic compounds, were decreased, an apparent reflection of chemical antioxidant defense against reactive oxygen species. Treatment with Cu and Pb also caused an increase in the number of floridean starch grains, probably as a defense against nutrient deprivation. Compared to plants treated with lead, those treated with copper showed higher metabolic and ultrastructural alterations. These results suggest that H. musciformis more readily internalizes copper through transcellular absorption. Finally, as a result of ultrastructural damage and metabolic changes observed in plants exposed to different concentrations of Cu and Pb, a significant reduction in growth rates was observed. Nevertheless, the results indicated different susceptibility of H. musciformis to different concentrations of Cu and Pb.


Asunto(s)
Cobre/toxicidad , Plomo/toxicidad , Rhodophyta/crecimiento & desarrollo , Contaminantes Químicos del Agua/toxicidad , Clorofila/metabolismo , Cobre/metabolismo , Flavonoides/metabolismo , Plomo/metabolismo , Fenoles/metabolismo , Fotosíntesis , Ficocianina/metabolismo , Proteínas de Plantas/metabolismo , Rhodophyta/efectos de los fármacos , Rhodophyta/ultraestructura , Agua de Mar/química , Contaminantes Químicos del Agua/metabolismo
18.
Protoplasma ; 252(5): 1347-59, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25666304

RESUMEN

By evaluating carotenoid content, photosynthetic pigments and changes in cellular morphology, growth rates, and photosynthetic performance, this study aimed to determine the effect of cadmium (Cd) on the development of young gametophytes of Gelidium floridanum. Plants were exposed to 7.5 and 15 µM of Cd for 7 days. Control plants showed increased formation of new filamentous thallus, increased growth rates, presence of starch grains in the cortical and subcortical cells, protein content distributed regularly throughout the cell periphery, and intense autofluorescence of chloroplasts. On the other hand, plants treated with Cd at concentrations of 7.5 and 15 µM showed few formations of new thallus with totally depigmented regions, resulting in decreased growth rates. Plants exposed to 7.5 µM Cd demonstrated alterations in the cell wall and an increase in starch grains in the cortical and subcortical cells, while plants exposed to 15 µM Cd showed changes in medullary cells with no organized distribution of protein content. The autofluorescence and structure of chloroplasts decreased, forming a thin layer on the periphery of cells. Cadmium also affected plant metabolism, as visualized by a decrease in photosynthetic pigments, in particular, phycoerythrin and phycocyanin contents, and an increase in carotenoids. This result agrees with decreased photosynthetic performance and chronic photoinhibition observed after treatment with Cd, as measured by the decrease in electron transport rate. Based on these results, it was concluded that exposure to Cd affects cell metabolism and results in significant toxicity to young gametophytes of G. floridanum.


Asunto(s)
Cadmio/toxicidad , Células Germinativas de las Plantas/efectos de los fármacos , Rhodophyta/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Carotenoides/metabolismo , Clorofila/metabolismo , Cloroplastos/metabolismo , Transporte de Electrón , Células Germinativas de las Plantas/fisiología , Células Germinativas de las Plantas/ultraestructura , Fotosíntesis , Rhodophyta/citología , Rhodophyta/fisiología
19.
Protoplasma ; 252(1): 221-9, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25005714

RESUMEN

Recently, the application of copper oxide nanoparticles (CuO-NPs) has increased considerably, primarily in scientific and industrial fields. However, studies to assess their health risks and environmental impacts are scarce. Therefore, the present study aims to evaluate the toxicological effects of CuO-NPs on the duckweed species Landoltia punctata, which was used as a test organism. To accomplish this, duckweed was grown under standard procedures according to ISO DIS 20079 and exposed to three different concentrations of CuO-NPs (0.1, 1.0, and 10.0 g L(-1)), with one control group (without CuO-NPs). The toxicological effects were measured based on growth rate inhibition, changes in the plant's morphology, effects on ultrastructure, and alterations in photosynthetic pigments. The morphological and ultrastructural effects were evaluated by electronic, scanning and light microscopic analysis, and CuO-NPs were characterized using transmission electron microscopy (TEM), zeta potential, and superficial area methods of analysis. This analysis was performed to evaluate nanoparticle size and form in solution and sample stability. The results showed that CuO-NPs affected morphology more significantly than growth rate. L. punctata also showed the ability to remove copper ions. However, for this plant to be representative within the trophic chain, the biomagnification of effects must be assessed.


Asunto(s)
Araceae/química , Cobre/química , Fotosíntesis/fisiología , Nanopartículas
20.
Photochem Photobiol ; 91(2): 359-70, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25443444

RESUMEN

The effect of ultraviolet (UV) radiation and copper (Cu) on apical segments of Pterocladiella capillacea was examined under two different conditions of radiation, PAR (control) and PAR+UVA+UVB (PAR+UVAB), and three copper concentrations, ranging from 0 (control) to 0.62, 1.25 and 2.50 µm. Algae were exposed in vitro to photosynthetically active radiation (PAR) at 70 µmol photons m(-2)  s(-1) , PAR + UVB at 0.35 W m(-2) and PAR +UVA at 0.70 W m(-2) during a 12-h photocycle for 3 h each day for 7 days. The effects of radiation and copper on growth rates, content of photosynthetic pigments and photosynthetic performance were analyzed. In addition, samples were processed for light and transmission electron microscopy. The content of photosynthetic pigments decreased after exposure to radiation and Cu. Compared with PAR radiation and copper treatments modified the kinetics patterns of the photosynthesis/irradiance curve. The treatments also caused changes in the ultrastructure of cortical and subcortical cells, including increased cell wall thickness and accumulation of plastoglobuli, as well as changes in the organization of chloroplasts. The results indicate that the synergistic interaction between UV radiation and Cu in P. capillacea, led to the failure of protective mechanisms and causing more drastic changes and cellular imbalances.


Asunto(s)
Pared Celular/efectos de la radiación , Cloroplastos/efectos de la radiación , Cobre/toxicidad , Fotones , Fotosíntesis/efectos de la radiación , Rhodophyta/efectos de la radiación , Pared Celular/efectos de los fármacos , Pared Celular/ultraestructura , Clorofila/biosíntesis , Clorofila A , Cloroplastos/efectos de los fármacos , Cloroplastos/fisiología , Cloroplastos/ultraestructura , Microscopía Electrónica de Transmisión , Fotoperiodo , Fotosíntesis/efectos de los fármacos , Fotosíntesis/fisiología , Ficobiliproteínas/biosíntesis , Pigmentos Biológicos/biosíntesis , Rhodophyta/efectos de los fármacos , Rhodophyta/fisiología , Rhodophyta/ultraestructura , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda