Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Vet World ; 14(12): 3164-3169, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35153408

RESUMEN

BACKGROUND AND AIM: Despite many trials, buffalo embryos have poor cryosurvivability because of their high lipid content. L-carnitine was found to be a lipid-reducing agent when added to oocyte and embryo culture media. The study aimed to determine the most effective concentration of L-carnitine to improve the oocyte developmental competence and cryotolerance of buffalo embryos. MATERIALS AND METHODS: In vitro maturation and embryo culture media were supplemented with four concentrations of L-carnitine: 0 (control), 0.25, 0.5, and 1 mM. Good-quality embryos on 7 days were vitrified using mixtures of dimethyl sulfoxide and ethylene glycol at two concentrations (3.5 and 7 M). RESULTS: The result showed that the cleavage and morula rates were significantly (p<0.05) higher in the 0.5 mM group. Blastocyst rates were significantly (p<0.05) higher at both 0.5 and 1 mM. The rates of viable embryos directly after thawing were significantly (p<0.05) increased in the 0.5 mM group. No significant difference was found in embryos cultured for 24 h after warming among all the groups. CONCLUSION: The addition of L-carnitine at a concentration of 0.5 mM to the culture media improves the oocyte developmental competence and cryotolerance of buffalo embryos directly after warming but not after 24 h of culture. Nevertheless, further studies must identify how L-carnitine exerts its beneficial micromechanisms.

2.
Reprod Domest Anim ; 45(4): 565-71, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19090828

RESUMEN

This study was designed to evaluate effects of different combinations of cryoprotectants on the ability of vitrified immature buffalo oocytes to undergo in vitro maturation. Straw and open-pulled straw (OPS) methods for vitrification of oocytes at the germinal vesicle stage also were compared. The immature oocytes were harvested from ovaries of slaughtered animals and were divided into three groups: (i) untreated (control); (ii) exposed to cryoprotectant agents (CPAs); or (iii) cryopreserved by straw and OPS vitrification methods. The vitrification solution (VS) consisted of 6 m ethylene glycol (EG) as the standard, control vitrification treatment, and this was compared with 3 m EG + 3 m dimethyl sulfoxide (DMSO), 3 m EG + 3 m glycerol, and 3 m DMSO + 3 m glycerol. Cryoprotectants were added in two steps, with the first step concentration half that of the second (and final) step concentration. After warming, oocyte samples were matured by standard methods and then fixed and stained for nuclear evaluation. Rates of MII oocytes exposed to CPAs without vitrification were lower (54.3 +/- 1.9% in EG, 47.5 +/- 3.4% in EG + DMSO, 36.8 +/- 1.2% in EG + glycerol and 29.9 +/- 1.0% in DMSO + glycerol; p < 0.05) than for the control group (79.8 +/- 1.3%). For all treatments in each vitrification experiment, results were nearly identical for straws and OPS, so all results presented are the average of these two containers. The percentages of oocytes reaching telophase-I or metaphase-II stages were lower in oocytes cryopreserved using all treatments when compared with control. However, among the vitrified oocytes, the highest maturation rate was seen in oocytes vitrified in EG + DMSO (41.5 +/- 0.6%). Oocytes cryopreserved in all groups with glycerol had an overall low maturation rate 19.0 +/- 0.6% for EG + glycerol and 17.0 +/- 1.1% for DMSO + glycerol. We conclude that the function of oocytes was severely affected by both vitrification and exposure to cryoprotectants without vitrification; the best combination of cryoprotectants was EG + DMSO for vitrification of immature buffalo oocytes using either straw or OPS methods.


Asunto(s)
Búfalos , Fase de Segmentación del Huevo/efectos de los fármacos , Criopreservación/veterinaria , Crioprotectores/farmacología , Oocitos/efectos de los fármacos , Animales , Dimetilsulfóxido/farmacología , Glicol de Etileno/farmacología , Femenino , Fertilización In Vitro/veterinaria , Glicerol/farmacología , Oocitos/citología
3.
Iran J Vet Res ; 17(4): 253-258, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28224009

RESUMEN

The present study aimed to compare the in vitro fertilizing capacity of frozen-thawed ejaculated and epididymal spermatozoa in order to standardize the semen preparation protocol for camel in vitro fertilization (IVF). Semen samples were collected from 7 Dromedary camels by means of artificial vagina (AV). Ten cauda epididymes were obtained from slaughtered adult camels, isolated, incised and rinsed for obtaining the sperm rich fluid. Ejaculated and epididymal spermatozoa were processed for cryopreservation. Fresh and frozen-thawed ejaculated and epididymal spermatozoa were evaluated for motility, livability, membrane and acrosomal integrities. Frozen-thawed ejaculated and epididymal spermatozoa were used to fertilize camel mature oocytes in vitro. The results showed that, the progressive motility of freshly collected epididymal spermatozoa was significantly (P<0.05) higher than ejaculated spermatozoa (49.25 ± 1.75 vs. 38.50 ± 1.50%, respectively). The viability index of epididymal spermatozoa was significantly (P<0.05) higher than that of ejaculated spermatozoa (96.63 ± 2.45 vs. 84.00 ± 4.08, respectively). The post-thaw acrosome and membrane integrities of epididymal spermatozoa were significantly (P<0.05) higher than those of ejaculated spermatozoa. Morula and blastocyst rates of camel oocytes in vitro fertilized by frozen-thawed epididymal spermatozoa (59.4 ± 0.8, 19.12 ± 0.7 and 10.29 ± 0.7%, respectively) were significantly (P<0.05) higher than those fertilized by frozen-thawed ejaculated spermatozoa (48.27 ± 3.1, 11.63 ± 1.1 and 5.43 ± 0.8%, respectively). In conclusion, the Dromedary camel frozen epididymal spermatozoa have the capacity to endure cryopreservation, fertilize oocytes and produce embryos in vitro better than ejaculated sperm.

4.
Iran J Vet Res ; 16(4): 325-30, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-27175197

RESUMEN

Cryopreservation and sexing of embryos are integrated into commercial embryo transfer technologies. To improve the effectiveness of vitrification of in vitro produced buffalo embryos, two experiments were conducted. The first evaluated the effect of exposure time (2 and 3 min) and developmental stage (morula and blastocysts) on the viability and development of vitrified buffalo embryos. Morphologically normal embryos and survival rates (re-expansion) significantly increased when vitrified morulae were exposed for 2 min compared to 3 min (P<0.001). On the other hand, morphologically normal and survival rates of blastocysts significantly increased when exposed for 3 min compared to 2 min (P<0.001). However, there were no significant differences between the two developmental stages (morulae and blastocystes) in the percentages of morphologically normal embryos and re-expansion rates after a 24 h culture. The second experiment aimed to evaluate the effect of viability on the sex ratio of buffalo embryos after vitrification and whether male and female embryos survived vitrification differently. A total number of 61 blastocysts were vitrified for 3 min with the same cryoprotectant as experiment 1. Higher percentages of males were recorded for live as compared to dead embryos; however, this difference was not significant. In conclusion, the post-thaw survival and development of in vitro produced morulae and blastocysts were found to be affected by exposure time rather than developmental stage. Survivability had no significant effect on the sex ratio of vitrified blastocysts; nevertheless, the number of surviving males was higher than dead male embryos.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda