Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Lab Chip ; 20(23): 4391-4403, 2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-33089837

RESUMEN

Important insights into human health can be obtained through the non-invasive collection and detailed analysis of sweat, a biofluid that contains a wide range of essential biomarkers. Skin-interfaced microfluidic platforms, characterized by soft materials and thin geometries, offer a collection of capabilities for in situ capture, storage, and analysis of sweat and its constituents. In ambulatory uses cases, the ability to provide real-time feedback on sweat loss, rate and content, without visual inspection of the device, can be important. This paper introduces a low-profile skin-interfaced system that couples disposable microfluidic sampling devices with reusable 'stick-on' electrodes and wireless readout electronics that remain isolated from the sweat. An ultra-thin capping layer on the microfluidic platform permits high-sensitivity, contactless capacitive measurements of both sweat loss and sweat conductivity. This architecture avoids the potential for corrosion of the sensing components and eliminates the need for cleaning/sterilizing the electronics, thereby resulting in a cost-effective platform that is simple to use. Optimized electrode designs follow from a combination of extensive benchtop testing, analytical calculations and FEA simulations for two sensing configurations: (1) sweat rate and loss, and (2) sweat conductivity, which contains information about electrolyte content. Both configurations couple to a flexible, wireless electronics platform that digitizes and transmits information to Bluetooth-enabled devices. On-body field testing during physical exercise validates the performance of the system in scenarios of practical relevance to human health and performance.


Asunto(s)
Técnicas Biosensibles , Sudor , Electrónica , Humanos , Dispositivos Laboratorio en un Chip , Microfluídica , Piel
2.
Adv Mater ; 31(32): e1902109, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31206791

RESUMEN

Comprehensive analysis of sweat chemistry provides noninvasive health monitoring capabilities that complement established biophysical measurements such as heart rate, blood oxygenation, and body temperature. Recent developments in skin-integrated soft microfluidic systems address many challenges associated with standard technologies in sweat collection and analysis. However, recording of time-dependent variations in sweat composition requires bulky electronic systems and power sources, thereby constraining form factor, cost, and modes of use. Here, presented are unconventional design concepts, materials, and device operation principles that address this challenge. Flexible galvanic cells embedded within skin-interfaced microfluidics with passive valves serve as sweat-activated "stopwatches" that record temporal information associated with collection of discrete microliter volumes of sweat. The result allows for precise measurements of dynamic sweat composition fluctuations using in situ or ex situ analytical techniques. Integrated electronics based on near-field communication (NFC) protocols or docking stations equipped with standard electronic measurement tools provide means for extracting digital timing results from the stopwatches. Human subject studies of time-stamped sweat samples by in situ colorimetric methods and ex situ techniques based on inductively coupled plasma mass spectroscopy (ICP-MS) and chlorodimetry illustrate the ability to quantitatively capture time-dynamic sweat chemistry in scenarios compatible with field use.


Asunto(s)
Diseño de Equipo/instrumentación , Dispositivos Laboratorio en un Chip , Piel/química , Sudor/química , Técnicas Biosensibles/instrumentación , Colorimetría , Prueba de Esfuerzo , Humanos , Teléfono Inteligente , Factores de Tiempo , Dispositivos Electrónicos Vestibles
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda