Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Am J Hum Genet ; 106(1): 102-111, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31883641

RESUMEN

Isolated complex III (CIII) deficiencies are among the least frequently diagnosed mitochondrial disorders. Clinical symptoms range from isolated myopathy to severe multi-systemic disorders with early death and disability. To date, we know of pathogenic variants in genes encoding five out of 10 subunits and five out of 13 assembly factors of CIII. Here we describe rare bi-allelic variants in the gene of a catalytic subunit of CIII, UQCRFS1, which encodes the Rieske iron-sulfur protein, in two unrelated individuals. Affected children presented with low CIII activity in fibroblasts, lactic acidosis, fetal bradycardia, hypertrophic cardiomyopathy, and alopecia totalis. Studies in proband-derived fibroblasts showed a deleterious effect of the variants on UQCRFS1 protein abundance, mitochondrial import, CIII assembly, and cellular respiration. Complementation studies via lentiviral transduction and overexpression of wild-type UQCRFS1 restored mitochondrial function and rescued the cellular phenotype, confirming UQCRFS1 variants as causative for CIII deficiency. We demonstrate that mutations in UQCRFS1 can cause mitochondrial disease, and our results thereby expand the clinical and mutational spectrum of CIII deficiencies.


Asunto(s)
Alopecia/patología , Cardiomiopatías/patología , Complejo III de Transporte de Electrones/deficiencia , Proteínas Hierro-Azufre/genética , Enfermedades Mitocondriales/patología , Mutación , Alelos , Alopecia/genética , Cardiomiopatías/genética , Niño , Complejo III de Transporte de Electrones/genética , Humanos , Lactante , Masculino , Enfermedades Mitocondriales/genética , Linaje
2.
Mov Disord ; 35(1): 142-150, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31518459

RESUMEN

BACKGROUND: Mitochondrial membrane protein-associated neurodegeneration is an autosomal-recessive disorder caused by C19orf12 mutations and characterized by iron deposits in the basal ganglia. OBJECTIVES: The aim of this study was to quantify iron concentrations in deep gray matter structures using quantitative susceptibility mapping MRI and to characterize metabolic abnormalities in the pyramidal pathway using 1 H MR spectroscopy in clinically manifesting membrane protein-associated neurodegeneration patients and asymptomatic C19orf12 gene mutation heterozygous carriers. METHODS: We present data of 4 clinically affected membrane protein-associated neurodegeneration patients (mean age: 21.0 ± 2.9 years) and 9 heterozygous gene mutation carriers (mean age: 50.4 ± 9.8 years), compared to age-matched healthy controls. MRI assessments were performed on a 7.0 Tesla whole-body system, consisting of whole-brain gradient-echo scans and short echo time, single-volume MR spectroscopy in the white matter of the precentral/postcentral gyrus. Quantitative susceptibility mapping, a surrogate marker for iron concentration, was performed using a state-of-the-art multiscale dipole inversion approach with focus on the globus pallidus, thalamus, putamen, caudate nucleus, and SN. RESULTS AND CONCLUSION: In membrane protein-associated neurodegeneration patients, magnetic susceptibilities were 2 to 3 times higher in the globus pallidus (P = 0.02) and SN (P = 0.02) compared to controls. In addition, significantly higher magnetic susceptibility was observed in the caudate nucleus (P = 0.02). Non-manifesting heterozygous mutation carriers exhibited significantly increased magnetic susceptibility (relative to controls) in the putamen (P = 0.003) and caudate nucleus (P = 0.001), which may be an endophenotypic marker of genetic heterozygosity. MR spectroscopy revealed significantly increased levels of glutamate, taurine, and the combined concentration of glutamate and glutamine in membrane protein-associated neurodegeneration, which may be a correlate of corticospinal pathway dysfunction frequently observed in membrane protein-associated neurodegeneration patients. © 2019 International Parkinson and Movement Disorder Society.


Asunto(s)
Encéfalo/patología , Hierro/metabolismo , Proteínas Mitocondriales/genética , Mutación/genética , Encéfalo/metabolismo , Humanos , Imagen por Resonancia Magnética/métodos , Proteínas de la Membrana/genética , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo
3.
Am J Hum Genet ; 98(3): 473-489, 2016 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-26924529

RESUMEN

Transcriptional signal cointegrators associate with transcription factors or nuclear receptors and coregulate tissue-specific gene transcription. We report on recessive loss-of-function mutations in two genes (TRIP4 and ASCC1) that encode subunits of the nuclear activating signal cointegrator 1 (ASC-1) complex. We used autozygosity mapping and whole-exome sequencing to search for pathogenic mutations in four families. Affected individuals presented with prenatal-onset spinal muscular atrophy (SMA), multiple congenital contractures (arthrogryposis multiplex congenita), respiratory distress, and congenital bone fractures. We identified homozygous and compound-heterozygous nonsense and frameshift TRIP4 and ASCC1 mutations that led to a truncation or the entire absence of the respective proteins and cosegregated with the disease phenotype. Trip4 and Ascc1 have identical expression patterns in 17.5-day-old mouse embryos with high expression levels in the spinal cord, brain, paraspinal ganglia, thyroid, and submandibular glands. Antisense morpholino-mediated knockdown of either trip4 or ascc1 in zebrafish disrupted the highly patterned and coordinated process of α-motoneuron outgrowth and formation of myotomes and neuromuscular junctions and led to a swimming defect in the larvae. Immunoprecipitation of the ASC-1 complex consistently copurified cysteine and glycine rich protein 1 (CSRP1), a transcriptional cofactor, which is known to be involved in spinal cord regeneration upon injury in adult zebrafish. ASCC1 mutant fibroblasts downregulated genes associated with neurogenesis, neuronal migration, and pathfinding (SERPINF1, DAB1, SEMA3D, SEMA3A), as well as with bone development (TNFRSF11B, RASSF2, STC1). Our findings indicate that the dysfunction of a transcriptional coactivator complex can result in a clinical syndrome affecting the neuromuscular system.


Asunto(s)
Fracturas Óseas/genética , Regulación del Desarrollo de la Expresión Génica , Atrofia Muscular Espinal/genética , Factores de Transcripción/genética , Secuencia de Aminoácidos , Animales , Artrogriposis/diagnóstico , Artrogriposis/genética , Proteínas Portadoras/genética , Células Cultivadas , Fibroblastos/citología , Fibroblastos/metabolismo , Fracturas Óseas/diagnóstico , Perfilación de la Expresión Génica , Homocigoto , Humanos , Proteínas con Dominio LIM/genética , Ratones , Datos de Secuencia Molecular , Atrofia Muscular Espinal/diagnóstico , Mutación , Proteínas Nucleares/genética , Linaje , Fenotipo , Pez Cebra , Proteínas de Pez Cebra/genética
4.
Am J Hum Genet ; 97(2): 319-28, 2015 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-26189817

RESUMEN

Deficiencies in respiratory-chain complexes lead to a variety of clinical phenotypes resulting from inadequate energy production by the mitochondrial oxidative phosphorylation system. Defective expression of mtDNA-encoded genes, caused by mutations in either the mitochondrial or nuclear genome, represents a rapidly growing group of human disorders. By whole-exome sequencing, we identified two unrelated individuals carrying compound heterozygous variants in TRMT5 (tRNA methyltransferase 5). TRMT5 encodes a mitochondrial protein with strong homology to members of the class I-like methyltransferase superfamily. Both affected individuals presented with lactic acidosis and evidence of multiple mitochondrial respiratory-chain-complex deficiencies in skeletal muscle, although the clinical presentation of the two affected subjects was remarkably different; one presented in childhood with failure to thrive and hypertrophic cardiomyopathy, and the other was an adult with a life-long history of exercise intolerance. Mutations in TRMT5 were associated with the hypomodification of a guanosine residue at position 37 (G37) of mitochondrial tRNA; this hypomodification was particularly prominent in skeletal muscle. Deficiency of the G37 modification was also detected in human cells subjected to TRMT5 RNAi. The pathogenicity of the detected variants was further confirmed in a heterologous yeast model and by the rescue of the molecular phenotype after re-expression of wild-type TRMT5 cDNA in cells derived from the affected individuals. Our study highlights the importance of post-transcriptional modification of mitochondrial tRNAs for faithful mitochondrial function.


Asunto(s)
Enfermedades Mitocondriales/genética , Modelos Moleculares , Procesamiento Postranscripcional del ARN/genética , ARN de Transferencia/genética , ARNt Metiltransferasas/genética , Secuencia de Aminoácidos , Emparejamiento Base , Secuencia de Bases , Exoma/genética , Mutación del Sistema de Lectura/genética , Humanos , Enfermedades Mitocondriales/patología , Datos de Secuencia Molecular , Linaje , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN , ARNt Metiltransferasas/química
5.
Mov Disord ; 31(11): 1733-1739, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27400804

RESUMEN

BACKGROUND: Recessive mutations in the 3-hydroxyisobutyryl-CoA hydrolase gene (HIBCH) are associated with a rare neurodegenerative disease that affects the basal ganglia. Most patients die during infancy or early childhood. Here we describe 5 adolescent and adult patients from 2 unrelated families, who presented with a movement disorder and MRI features suggestive of Leigh syndrome. METHODS: Clinical and metabolic assessment was followed by autozygosity mapping and whole exome and Sanger sequencing. HIBCH enzyme activity and the bioenergetic profile were determined in patient fibroblasts. RESULTS: The movement disorder was dominated by ataxia in one family and by dystonia in the other. All affected family members carried the identical homozygous c.913A>G (p.T305A) HIBCH mutation. Enzyme activity was reduced, and a valine challenge reduced the oxygen consumption rate. CONCLUSIONS: We report the first adult patients with HIBCH deficiency and a disease course much milder than previously reported, thereby expanding the HIBCH-associated phenotypic spectrum. © 2016 International Parkinson and Movement Disorder Society.


Asunto(s)
Anomalías Múltiples/fisiopatología , Errores Innatos del Metabolismo de los Aminoácidos/fisiopatología , Enfermedad de Leigh/fisiopatología , Trastornos del Movimiento/fisiopatología , Tioléster Hidrolasas/deficiencia , Anomalías Múltiples/genética , Adolescente , Adulto , Errores Innatos del Metabolismo de los Aminoácidos/genética , Ataxia/genética , Ataxia/fisiopatología , Niño , Trastornos Distónicos/genética , Trastornos Distónicos/fisiopatología , Femenino , Humanos , Enfermedad de Leigh/genética , Masculino , Trastornos del Movimiento/genética , Mutación Missense , Linaje , Tioléster Hidrolasas/genética , Adulto Joven
6.
Mol Genet Metab ; 111(3): 342-352, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24461907

RESUMEN

Defects of mitochondrial oxidative phosphorylation (OXPHOS) are associated with a wide range of clinical phenotypes and time courses. Combined OXPHOS deficiencies are mainly caused by mutations of nuclear genes that are involved in mitochondrial protein translation. Due to their genetic heterogeneity it is almost impossible to diagnose OXPHOS patients on clinical grounds alone. Hence next generation sequencing (NGS) provides a distinct advantage over candidate gene sequencing to discover the underlying genetic defect in a timely manner. One recent example is the identification of mutations in MTFMT that impair mitochondrial protein translation through decreased formylation of Met-tRNA(Met). Here we report the results of a combined exome sequencing and candidate gene screening study. We identified nine additional MTFMT patients from eight families who were affected with Leigh encephalopathy or white matter disease, microcephaly, mental retardation, ataxia, and muscular hypotonia. In four patients, the causal mutations were identified by exome sequencing followed by stringent bioinformatic filtering. In one index case, exome sequencing identified a single heterozygous mutation leading to Sanger sequencing which identified a second mutation in the non-covered first exon. High-resolution melting curve-based MTFMT screening in 350 OXPHPOS patients identified pathogenic mutations in another three index cases. Mutations in one of them were not covered by previous exome sequencing. All novel mutations predict a loss-of-function or result in a severe decrease in MTFMT protein in patients' fibroblasts accompanied by reduced steady-state levels of complex I and IV subunits. Being present in 11 out of 13 index cases the c.626C>T mutation is one of the most frequent disease alleles underlying OXPHOS disorders. We provide detailed clinical descriptions on eleven MTFMT patients and review five previously reported cases.


Asunto(s)
Transferasas de Hidroximetilo y Formilo/genética , Enfermedad de Leigh/genética , Fosforilación Oxidativa , Biosíntesis de Proteínas , Adolescente , Adulto , Niño , Preescolar , Exoma , Femenino , Estudios de Asociación Genética , Humanos , Transferasas de Hidroximetilo y Formilo/metabolismo , Lactante , Recién Nacido , Enfermedad de Leigh/metabolismo , Enfermedad de Leigh/patología , Masculino , Mitocondrias/genética , Mitocondrias/patología , ARN de Transferencia de Metionina/genética , Análisis de Secuencia de ADN
9.
Orphanet J Rare Dis ; 13(1): 120, 2018 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-30025539

RESUMEN

BACKGROUND: Mitochondrial acyl-CoA dehydrogenase family member 9 (ACAD9) is essential for the assembly of mitochondrial respiratory chain complex I. Disease causing biallelic variants in ACAD9 have been reported in individuals presenting with lactic acidosis and cardiomyopathy. RESULTS: We describe the genetic, clinical and biochemical findings in a cohort of 70 patients, of whom 29 previously unpublished. We found 34 known and 18 previously unreported variants in ACAD9. No patients harbored biallelic loss of function mutations, indicating that this combination is unlikely to be compatible with life. Causal pathogenic variants were distributed throughout the entire gene, and there was no obvious genotype-phenotype correlation. Most of the patients presented in the first year of life. For this subgroup the survival was poor (50% not surviving the first 2 years) comparing to patients with a later presentation (more than 90% surviving 10 years). The most common clinical findings were cardiomyopathy (85%), muscular weakness (75%) and exercise intolerance (72%). Interestingly, severe intellectual deficits were only reported in one patient and severe developmental delays in four patients. More than 70% of the patients were able to perform the same activities of daily living when compared to peers. CONCLUSIONS: Our data show that riboflavin treatment improves complex I activity in the majority of patient-derived fibroblasts tested. This effect was also reported for most of the treated patients and is mirrored in the survival data. In the patient group with disease-onset below 1 year of age, we observed a statistically-significant better survival for patients treated with riboflavin.


Asunto(s)
Acidosis/genética , Acidosis/metabolismo , Acil-CoA Deshidrogenasa/deficiencia , Errores Innatos del Metabolismo de los Aminoácidos/genética , Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/metabolismo , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Debilidad Muscular/genética , Debilidad Muscular/metabolismo , Riboflavina/uso terapéutico , Acidosis/patología , Actividades Cotidianas , Acil-CoA Deshidrogenasa/genética , Acil-CoA Deshidrogenasa/metabolismo , Errores Innatos del Metabolismo de los Aminoácidos/patología , Cardiomiopatía Hipertrófica/patología , Complejo I de Transporte de Electrón/metabolismo , Femenino , Humanos , Masculino , Enfermedades Mitocondriales/patología , Debilidad Muscular/tratamiento farmacológico , Debilidad Muscular/patología , Pronóstico
10.
Mitochondrion ; 37: 46-54, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28687512

RESUMEN

Recessive mutations in EXOSC3, encoding a subunit of the human RNA exosome complex, cause pontocerebellar hypoplasia type 1b (PCH1B). We report a boy with severe muscular hypotonia, psychomotor retardation, progressive microcephaly, and cerebellar atrophy. Biochemical abnormalities comprised mitochondrial complex I and pyruvate dehydrogenase complex (PDHc) deficiency. Whole exome sequencing uncovered a known EXOSC3 mutation p.(D132A) as the underlying cause. In patient fibroblasts, a large portion of the EXOSC3 protein was trapped in the cytosol. MtDNA copy numbers in muscle were reduced to 35%, but mutations in the mtDNA and in nuclear mitochondrial genes were ruled out. RNA-Seq of patient muscle showed highly increased mRNA copy numbers, especially for genes encoding structural subunits of OXPHOS complexes I, III, and IV, possibly due to reduced degradation by a dysfunctional exosome complex. This is the first case of mitochondrial dysfunction associated with an EXOSC3 mutation, which expands the phenotypic spectrum of PCH1B. We discuss the links between exosome and mitochondrial dysfunction.


Asunto(s)
Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/patología , Mutación , Atrofias Olivopontocerebelosas/genética , Atrofias Olivopontocerebelosas/patología , Proteínas de Unión al ARN/genética , Complejo I de Transporte de Electrón/deficiencia , Humanos , Lactante , Masculino , Enfermedad por Deficiencia del Complejo Piruvato Deshidrogenasa
11.
Neurol Genet ; 1(4): e32, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27066569

RESUMEN

OBJECTIVE: To identify the underlying genetic cause of a congenital neuropathy in a 5-year-old boy as part of a cohort of 32 patients from 23 families with genetically unresolved neuropathies. METHODS: We used autozygosity mapping coupled with next-generation sequencing to investigate a consanguineous family from Lebanon with 1 affected and 2 healthy children. Variants were investigated for segregation in the family by Sanger sequencing. A splice site mutation was further evaluated on the messenger RNA level by quantitative reverse transcription PCR. Subsequently, a larger cohort was specifically screened for receptor expression-enhancing protein 1 (REEP1) gene mutations. RESULTS: We detected a homozygous splice donor mutation in REEP1 (c.303+1-7GTAATAT>AC, p.F62Kfs23*; NM_022912) that cosegregated with the phenotype in the family, leading to complete skipping of exon 4 and a premature stop codon. The phenotype of the patient is similar to spinal muscular atrophy with respiratory distress type 1 (SMARD1) with additional distal arthrogryposis and involvement of the upper motor neuron manifested by pronounced hyperreflexia. CONCLUSION: To date, only dominant REEP1 mutations have been reported to be associated with a slowly progressive hereditary spastic paraplegia. The findings from our patient expand the phenotypical spectrum and the mode of inheritance of REEP1-associated disorders. Recessive mutations in REEP1 should be considered in the molecular genetic workup of patients with a neuromuscular disorder resembling SMARD1, especially if additional signs of upper motor neuron involvement and distal arthrogryposis are present.

12.
Neurology ; 84(5): 523-31, 2015 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-25568292

RESUMEN

OBJECTIVE: To identify the cause of sensorimotor neuropathy in a cohort of patients with genetically unsolved neuropathies (57 families with a total of 74 members) in whom hitherto known disease genes had been excluded. METHODS: We used autozygosity mapping or haplotype analysis to delineate potential disease loci in informative families. For mutation detection, we used either whole-exome sequencing or Sanger sequencing of positional candidates. Subsequently, a larger cohort was specifically screened for IGHMBP2 mutations. The pathogenicity of a splice-site mutation was verified in cultured patient skin fibroblasts on the messenger RNA level and by Western blot. RESULTS: We report on 5 patients with neuropathy from 3 families who carried truncating mutations in IGHMBP2. Contrary to the "classic" phenotype, they did not manifest with respiratory distress, but with progressive sensorimotor neuropathy. Only one patient required nocturnal mask ventilation, while 4 others maintained normal respiratory function by the age of 14, 18, 22, and 37 years. Three patients were still able to walk independently. All patients had a predominantly axonal sensorimotor neuropathy with subsequent muscle atrophy, but without obvious sensory symptoms. Two patients had signs of autonomic neuropathy. CONCLUSIONS: Mutations in IGHMBP2 should be considered in the molecular genetic workup of patients with hereditary sensorimotor neuropathies, even in the absence of respiratory symptoms.


Asunto(s)
Axones/patología , Proteínas de Unión al ADN/genética , Mutación/genética , Enfermedades del Sistema Nervioso Periférico/diagnóstico , Enfermedades del Sistema Nervioso Periférico/genética , Factores de Transcripción/genética , Adolescente , Adulto , Estudios de Cohortes , Femenino , Genes Recesivos/genética , Neuropatía Hereditaria Motora y Sensorial/diagnóstico , Neuropatía Hereditaria Motora y Sensorial/genética , Humanos , Masculino , Linaje
13.
Ann Clin Transl Neurol ; 2(5): 492-509, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-26000322

RESUMEN

OBJECTIVE: Short-chain enoyl-CoA hydratase (ECHS1) is a multifunctional mitochondrial matrix enzyme that is involved in the oxidation of fatty acids and essential amino acids such as valine. Here, we describe the broad phenotypic spectrum and pathobiochemistry of individuals with autosomal-recessive ECHS1 deficiency. METHODS: Using exome sequencing, we identified ten unrelated individuals carrying compound heterozygous or homozygous mutations in ECHS1. Functional investigations in patient-derived fibroblast cell lines included immunoblotting, enzyme activity measurement, and a palmitate loading assay. RESULTS: Patients showed a heterogeneous phenotype with disease onset in the first year of life and course ranging from neonatal death to survival into adulthood. The most prominent clinical features were encephalopathy (10/10), deafness (9/9), epilepsy (6/9), optic atrophy (6/10), and cardiomyopathy (4/10). Serum lactate was elevated and brain magnetic resonance imaging showed white matter changes or a Leigh-like pattern resembling disorders of mitochondrial energy metabolism. Analysis of patients' fibroblast cell lines (6/10) provided further evidence for the pathogenicity of the respective mutations by showing reduced ECHS1 protein levels and reduced 2-enoyl-CoA hydratase activity. While serum acylcarnitine profiles were largely normal, in vitro palmitate loading of patient fibroblasts revealed increased butyrylcarnitine, unmasking the functional defect in mitochondrial ß-oxidation of short-chain fatty acids. Urinary excretion of 2-methyl-2,3-dihydroxybutyrate - a potential derivative of acryloyl-CoA in the valine catabolic pathway - was significantly increased, indicating impaired valine oxidation. INTERPRETATION: In conclusion, we define the phenotypic spectrum of a new syndrome caused by ECHS1 deficiency. We speculate that both the ß-oxidation defect and the block in l-valine metabolism, with accumulation of toxic methacrylyl-CoA and acryloyl-CoA, contribute to the disorder that may be amenable to metabolic treatment approaches.

14.
Eur J Med Genet ; 53(2): 85-8, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20080219

RESUMEN

The association of mental retardation and persistent hyperphosphatasia has been described in rare instances. Because of parental consanguinity and sib recurrences autosomal recessive inheritance has been proposed. We report three sibs with a syndrome consisting of severe mental retardation, considerably elevated serum levels of alkaline phosphatase, hypoplastic terminal phalanges, and distinct facial features. Clinically and radiologically, shortness of distal phalanges could be demonstrated in all of them. Their particular facial appearance led us to two earlier reported familial cases with convincing clinical similarities. We suggest a specific clinical entity within the spectrum of patients with mental retardation and hyperphosphatasia, which is in particular characterized by a recognizable facial gestalt and brachytelephalangy.


Asunto(s)
Anomalías Múltiples/diagnóstico , Anomalías Múltiples/genética , Cara/anomalías , Hiperfosfatemia/genética , Discapacidad Intelectual/genética , Fosfatasa Alcalina/genética , Preescolar , Discapacidades del Desarrollo/genética , Facies , Salud de la Familia , Femenino , Humanos , Lactante , Masculino , Recto/anomalías , Hermanos , Síndrome
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda