Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Int J Mol Sci ; 23(19)2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36233139

RESUMEN

Casein microparticles are produced by flocculation of casein micelles due to volume exclusion of pectin and subsequent stabilization by film drying. Transglutaminase post-treatment alters their stability, swelling behavior, and internal structure. Untreated particles sediment due to their size and disintegrate completely after the addition of sodium dodecyl sulfate. The fact that transglutaminase-treated microparticles only sediment at comparable rates under these conditions shows that their structural integrity is not lost due to the detergent. Transglutaminase-treated particles reach an equilibrium final size after swelling instead of decomposing completely. By choosing long treatment times, swelling can also be completely suppressed as experiments at pH 11 show. In addition, deswelling effects also occur within the swelling curves, which enhance with increasing transglutaminase treatment time and are ascribed to the elastic network of cross-linked caseins. We propose a structural model for transglutaminase-treated microparticles consisting of a core of uncross-linked and a shell of cross-linked caseins. A dynamic model describes all swelling curves by considering both casein fractions in parallel. The characteristic correlation length of the internal structure of swollen casein microparticles is pH-independent and decreases with increasing transglutaminase treatment time, as observed also for the equilibrium swelling value of uncross-linked caseins.


Asunto(s)
Caseínas , Transglutaminasas , Caseínas/química , Reactivos de Enlaces Cruzados/química , Detergentes , Micelas , Pectinas , Dodecil Sulfato de Sodio , Transglutaminasas/química
2.
Micromachines (Basel) ; 14(3)2023 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-36985085

RESUMEN

Solvent flows in the fL/s range across the total surface of a casein microparticle cause its expansion and shrinkage. Microparticles prepared from the milk protein casein have a porous and flexible inner structure with water-filled channels and cavities. Solvent uptake occurs in two phases and results in disintegration if de-swelling is not triggered by acidification. So far, nothing is known about the reversibility of the swelling/de-swelling steps. We performed pH jump experiments between pH 11 and pH 1 on a single micro-particle and analyzed the swelling-induced size changes with system dynamics modeling. Both the swelling steps and the subsequent de-swelling process proceed reversibly and at an unchanged rate over a sequence of at least three pH exchange cycles. We observed that the duration of the first swelling step increased during the sequence, while the second step became shorter. Both of the time intervals are negatively correlated, while a statistical evaluation of only one swelling cycle for an ensemble of microparticles with different stabilities did not reveal any significant correlation between the two parameters. Our results indicate that the pH-induced swelling/shrinkage of casein microparticles is, to a large extent, reversible and only slightly influenced by the acid-induced decomposition of colloidal calcium phosphate.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda